Abstract:
The present invention relates to a turbine component (12, 2a) comprising a base body (14, 14a) having at least one cavity (16) providing a flow path (18, 18a) for a cooling medium (20) and at least one wall (22, 22a) at least partially surrounding the at least one cavity (16) and wherein the at least one wall (22, 22a) has an inner surface (24) being oriented towards the at least one cavity (16) and an outer surface (26) being oriented opposed to the inner surface (24) of the at least one wall (22, 22a), wherein the at least one turbine component (12, 12a) further comprises at least one layer (28) of porous material and at least one thermal barri-1 er coating (30), wherein the at least one layer (28) of porous material is arranged on the outer surface (26) of the at least one wall (22, 22a) of the base body (14, 14a) and the thermal barrier coating (30) is arranged at least partially on top of the at least one layer (28) of porous material.20 Due to this a good cooling efficiency can be provided.
Abstract:
L'invention porte sur un ensemble (1) pour turbomachine comprenant : • un premier module rotor (2) comprenant une première aube (20), • un deuxième module rotor (3), relié au premier module rotor (2), et comprenant une deuxième aube de longueur inférieure à la première aube (20), et • un dispositif amortisseur (4) comprenant une première surface radiale externe (41) en appui avec frottement contre le premier module (2) ainsi qu'une deuxième surface radiale externe (42) en appui avec frottement contre le deuxième module (3), de sorte à coupler les modules (2, 3) en vue d'amortir leurs mouvements vibratoires respectifs en fonctionnement.
Abstract:
CMC-Turbinenkomponente mit CMC-Material auf Basis von Metalloxiden oder Siliziumcarbid mit einer thermischen Barriere-Beschichtung zumindest auf einer CMC-Oberfläche, die durch ein Laminierverfahren herstellbar ist, aufweisend, wobei zumindest in einer Oberflächen-nahen Lage des CMC-Laminats ein oder mehrere Bruchfestigkeits-Additiv(e) vorgesehen sind, ausgewählt aus der Gruppe folgender Verbindungen: Zirkoniumdioxid - ZrO2 -, Siliziumdioxid - SiO2 -, Magnesiumdioxid - MgO2 -, Yttrium- Aluminium-Granat -YAG - und/oder Yttriumoxid Y2O3, die ein chemisches und/oder physikalisches Hindernis gegen Rissbildung, Rissausweitung und/oder Bruchbildung innerhalb dieser CMC-Lage bilden, wobei das Bruchfestigkeits-Additiv in einer Menge von 1 bis 50 Gew%, bezogen auf die ungesinterte CMC-Prepreg-Lage, vorliegt. Die Erfindung offenbart erstmals eine Technik, durch die eine herkömmliche einfache APS-Aufbringung einer thermischen Barriereschicht auf einer CMC-Turbinenkomponenten-Oberfläche ermöglicht ist.
Abstract:
The invention relates to a process of obtainment of a dense hydrophobic icephobic wear- resistant coating by means of Cold Gas Spray technique, to the coatings obtained by said process, its use as coating in wind turbine blades, to a wind turbine blade comprising said coatings. Furthermore, the invention relates to the uses of said coatings as anti-fouling coatings, as self-cleaning architecture and as aircraft coatings, as well as the uses in the manufacture of civil engineering or machinery pieces and car, train or truck parts.
Abstract:
The present disclosure is directed to systems and processes which prevent fluid droplet impact damage by surface engineering a respective component (2) to exhibit a water receding contact angle ≥ about 120 degrees upon contact with droplets (6) having a Weber number ≤ 2. The system may comprise a gas turbine engine with a water injection device for wet air compression.
Abstract:
Coating system (1) for coating a surface (3) of a substrate (5), the coating system (1) comprising; a coating (7), and an adhesive layer (9), that is disposed between the substrate (5) and the coating (7), wherein the adhesive layer (9) comprises a first adhesive layer portion (13) adjacent the substrate (5) and a second adhesive layer portion (15) adjacent the coating (7) and a carrier (11) placed between said first and second adhesive layer portions(13, 5), wherein the first adhesive layer portion (13) is composed of a first adhesive layer material, wherein the second adhesive layer portion (15) is composed of a second adhesive layer material, wherein the first adhesive layer material and the second adhesive layer material is having an adhesive or bond strength to the surface (3) of the substrate (5) and to the coating (7) respectively that exceeds their respective cohesive or tensile strength, wherein the first and second adhesive layer materials and carrier (11) combination is configured for having an adhesive strength that is less than their respective cohesive or tensile strength, wherein the carrier (11) is configured with grab tensile properties such that the carrier (11) in combination with the second adhesive layer portion (15) and the coating (7) will separate from the first adhesive layer portion (13) under the action of a peeling force.
Abstract:
Delamination of thermal barrier coatings ("TBC's") (276) from superalloy substrates (262) of components (260) for turbine engines (80), such as engine blades (92), vanes (104, 106), or castings in transitions (85), is inhibited during subsequent cooling passage (270) formation. Partially completed cooling passages (264), which have skewed passage paths that end at a terminus (268), which is laterally offset from the passage entrance (266), are formed in the superalloy component (260) prior to application of the TBC layer(s) (276). The skewed, laterally offset path of each partially completed cooling passage (264) establishes an overhanging shield layer (269) of superalloy material that protects the TBC layer (276) during completion of the cooling passage (270).
Abstract:
A turbine airfoil (10) for a gas turbine engine (12) having a more resilient film cooling hole (14) configuration is disclosed. The film cooling hole (14) may be positioned in an outer wall (16) of the airfoil (10) and may have an inlet (18) in communication with a cooling system (20) and an outlet (22) in an elevated film cooling exhaust surface (24) that extends outwardly further than an adjacent outer surface (26) of the outer wall (16). A thermal barrier coating (28) may be positioned on the outer wall (16), and the outer surface (30) of the elevated film cooling exhaust surface (24) may be positioned between the outer surface (26) of the outer wall (16) and an outer surface (32) of the thermal barrier coating (28), thereby positioning the elevated film cooling exhaust surface (24) above the outer surface (26) of the outer wall (16) of the airfoil (10). Such position reduces thermal stress at the film cooling hole (14) and improving local stress and bonding adjacent to the outlet (22).
Abstract:
Die Erfindung nennt ein Verfahren (2) zur Beschichtung einer Turbinenschaufel (1), welche einen Flügel (4) und wenigstens eine an einem Ende des Flügels (4) angeordnete Plattform (2) umfasst, wobei die oder jede Plattform (2) eine Kontaktzone (6) und wenigstens eine an die Kontaktzone (6) angrenzende flächige Überstandszone (8a, 8b) aufweist, und an der Kontaktzone (6) den Flügel (4) abschließt, mit den Verfahrensschritten : - flügelseitiges Auftragen wenigstens einer ersten Lage (22) einer Beschichtung (24) auf die Plattform (2), und - Entfernen der wenigstens ersten Lage (22) der Beschichtung (24) von wenigstens einer Stirnfläche (10a, 10b) der Plattform (2) im Bereich der Überstandszone (8a, 8b) unter Belassen der wenigstens ersten Lage (22) der Beschichtung (24) an der Stirnfläche (10c) im Bereich der Kontaktzone (6).