Abstract:
The present invention is directed to a process for hydrogenating one or more organic compounds especially unsaturated organic compounds by bringing the compound into contact with a hydrogen-containing gas in the presence of a catalyst, which comprises one or more catalytically active metals applied to a porous catalyst support. The one or more catalytically active metals having been derived via a decomposed organic complex of the metal on the support, in particular amine complexes of the metal. The decomposed complex may be treated with hydrogen to activate the catalyst before use as a hydrogenation catalyst.
Abstract:
The present invention is directed to processes for preparing supported metal catalysts comprising one or more catalytically active metals applied to a porous catalyst support and to processes that use such catalysts. The process requires the formation of an organic complex during the manufacture of the catalyst which after its formation is either partially or fully decomposed before reduction if the metal to form the catalyst. The catalysts have high levels of metal dispersion and uniform distribution of catalytically active metals on the support. The catalysts obtained form the processes are particularly effective in catalysing Fischer-Tropsch reactions and as adsorbants for the removal or organosulfur compounds from hydrocarbons.
Abstract:
Methods are provided for hydrotreating a feed to generate a product with a reduced or minimized aromatics content and/or an increased distillate product yield. A distillate boiling range feed having an elevated content of sulfur and/or nitrogen can be hydrotreated using at least two hydrotreating stages with intermediate separation to produce a hydrotreated distillate boiling range product with a reduced or minimized aromatics content. Additionally or alternately, a mixed metal catalyst formed from a suitable precursor can be used during the hydrotreating. A mixed metal catalyst formed from a suitable precursor can provide an unexpectedly superior activity for aromatic saturation. A still further unexpected benefit can be achieved by combining a multi-stage hydrotreating process with intermediate separation with hydrotreating in the presence of a mixed metal catalyst formed from a suitable precursor.
Abstract:
Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
Abstract:
A method is provided for preparing a supported cobalt-containing catalyst having substantially homogenously dispersed, small cobalt crystallites. The method comprises depositing cobalt nitrate on a support and then heating the support in an oxygen-containing, substantially water-free atmosphere to about 16O0C to form an intermediate decomposition product. This intermediate decomposition product is then calcined and reduced.
Abstract:
An in situ process for conducting regeneration of spent hydrocarbon synthesis catalyst. Regenerated, but not yet re-activated, catalyst (15) may be introduced into an operating HCS reactor (1) that has catalyst rejuvenation means (14). Any combination of a fresh, activated catalyst, a fresh, passivated catalyst or short-term or long-term deactivated catalysts may already be present in the HCS reactor (1). The regenerated, but not yet re-activated catalyst is activated in the HCS reactor (1) with rejuvenation means (14) at normal process conditions. The HCS reactor (1) receives syngas through the inlet line (3) and releases liquid hydrocarbons through outlet line (4) and gaseous hydrocarbon and unreacted syngas through the offgas line (2). Catalyst is removed from the HCS reactor (1) through the slipstream line (5) and into a filtration unit (6) which is fed with a stripping fluid (7). The filtered catalyst proceeds to the regeneration unit (9) which is fed a regenerative fluid (10). The regenerated catalyst is returned to the HCS Reactor (1) through the catalyst return line (11) where it is reactivated.