Abstract:
A system for controlling movement of a personal mobility vehicle near a restricted region is disclosed. In one embodiment, the system includes a detector that is configured to be disposed on the personal mobility vehicle and that is configured to receive an electromagnetic signal transmitted to the restricted region. The system also includes a control unit configured to communicate with the detector. The control unit is further configured to determine proximity of the detector to the restricted region using information related to the signal received by the detector. The control unit is also configured to provide a command to inhibit movement of the personal mobility vehicle in response to the determined proximity of the vehicle to the restricted region.
Abstract:
A containment area can be defined by a single cable carrying an asymmetric electromagnetic signal that generates a magnetic field comprising an asymmetric waveform. A single inductor circuit configured to detect a single axis of the magnetic field can detect the asymmetric waveform and determine which direction the inductor is traveling relative to the cable. A human-propelled cart can have a wheel that includes the single inductor circuit and detect whether the cart is being pushed from inside-to-outside the containment area (which may reflect the cart is being stolen or improperly used) or from outside-to-inside (which may reflect the cart is being returned). The cart can include an anti-theft system (e.g., a locking or braking wheel), which can be triggered if the cart is being moved from inside to outside the containment area. The single cable, single inductor system can be less expensive and more efficient than multi-cable, multi-inductor systems.
Abstract:
Examples of systems and methods for calibrating or operating a magnetic sensor for sensor temperature or operating conditions are provided. The magnetic sensor can comprise a dual magnetometer sensor that comprises a first, low-power-consumption magnetometer (e.g., a magneto-inductive magnetometer) and a second higher-power-consumption magnetometer (e.g., a magneto-resistive magnetometer). The second magnetometer can have a lower unit-to-unit variation in temperature calibration parameters and can be used to temperature-correct readings from the first magnetometer. The magnetic sensor can dynamically switch between usage of the first magnetometer and the second magnetometer in order to provide a dynamic sample rate that can depend on conditions within the sensor or external to the sensor.
Abstract:
Low-energy consumption techniques for locating a movable object using a global satellite navigation system (GNSS) are provided. A mobile station attached to or included in a movable object can communicate bidirectionally with a fixed base station to determine a location of the movable object. The mobile station may communicate an estimated position to the base station and receive from the base station a set of GNSS satellites that are visible to the mobile station. The mobile station can acquire satellite timing information from GNSS signals from the set of satellites and communicate minimally-processed satellite timing information to the base station. The base station can determine the position of the mobile station and communicate the position back to the mobile station. By offloading much of the processing to the base station, energy consumption of the mobile station is reduced.
Abstract:
A vehicle tracking system includes a wheel (32) containing sensor circuitry (88, 90, 92, 94, 96) capable of sensing various types of conditions, such as wheel rotation, wheel vibration caused by skidding, and specific electromagnetic and/or magnetic signals indicative of particular wheel locations. The sensor circuitry is coupled to an RF transceiver (82), which may but need not be included within the wheel. The wheel (32) may also include a brake mechanism (100). In one embodiment, the wheels (32) are placed on shopping carts (30) and are used to collect and monitor shopping cart status and location data via a wireless network. The collected data may be used for various purposes, such as locking the wheel of an exiting cart if the customer has not paid, estimating numbers of queued carts, stopping wheel skid events that occur during mechanized cart retrieval, store planning, and providing location-based messaging to customers.
Abstract:
Examples of systems and methods for locating movable objects such as carts (e.g., shopping carts) are disclosed. Such systems and methods can use dead reckoning techniques to estimate the current position of the movable object. Various techniques for improving accuracy of position estimates are disclosed, including compensation for various error sources involving the use of magnetometer and accelerometer, and using vibration analysis to derive wheel rotation rates. Various techniques utilize characteristics of the operating environment in conjunction with or in lieu of dead reckoning techniques, including characteristic of environment such as ground texture, availability of signals from radio frequency (RF) transmitters including precision fix sources. Navigation techniques can include navigation history and backtracking, motion direction detection for dual swivel casters, use of gyroscopes, determining cart weight, multi-level navigation, multi-level magnetic measurements, use of lighting signatures, use of multiple navigation systems, or hard/soft iron compensation for different cart configurations.
Abstract:
Various embodiments of a system for tracking and/or controlling wheeled vehicles (such as shopping carts), are described. In some embodiments, the system includes an RFID tag on the cart and an RFID reader device external to the cart. The tag can receive an interrogation signal from the reader and reply with a response signal. In various embodiments, the reader or a central control unit can perform various calculations based on the response signal, such as generating a received signal strength indication (RSSI) value. In some embodiments, based on the RSSI value or otherwise, the reader can send a command signal to the tag to take an action, such as to engage a brake mechanism.
Abstract:
A power management system is disclosed. Embodiments of the power management system may be configured for use with an electric generator that produces AC or DC voltage from an energy source, which may be intermittent or fluctuating. One embodiment of the power management system includes an energy storage reservoir configured to be electrically coupled to the electric generator. The energy storage reservoir includes at least one ultracapacitor and at least one rechargeable battery. The power management system also includes an electronic controller configured to control storage in the reservoir of energy generated by the electric generator and to control power usage from the reservoir and the generator. The electronic controller is configured to control energy storage and power usage in response to one or more control signals.
Abstract:
A power generation system for wheeled objects comprises a generator mechanically coupled to one or more of the object's wheels to convert wheel rotational energy into electrical energy. The power generation system may comprise an electrical storage device configured to store the electrical power produced by the generator. Power from the generator and/or the electrical storage device can be used to provide power to other electrical systems in or on the object. In certain preferred embodiments, the electrical storage device comprises a bank of high-capacity capacitors connected in series. Some embodiments use a control circuit, for example, to regulate the charging and discharging of the capacitor bank and to provide suitable voltages for other systems. In some embodiments, the power generation system is configured to be disposed within the object's wheel.
Abstract:
A navigation system uses a dead reckoning method to estimate an object's present position relative to one or more prior positions. The dead reckoning method determines a change in position from the object's heading and speed during an elapsed time interval. In embodiments suitable for use with wheeled objects, the dead reckoning method determines the change in position by measuring the heading and the amount of wheel rotation. The heading is determined with reference to the Earth's magnetic field by disposing magnetic sensors in or in the object. Error correction and position reset procedures may be implemented to reduce accumulated navigational error. In preferred embodiments, some or all of the navigation system is disposed within a wheel of the object. The navigation system determines whether the object has exited a confinement area and activates an anti-theft system such as an alarm or wheel locking mechanism.