摘要:
A silicon carbide (SiC) charge balance (CB) device (4) includes a CB layer (18A), which includes a first epitaxial (epi) layer (14A). An active area (6) of the first epi layer includes a first doping concentration of a first conductivity type and a first plurality of CB regions (34) of a second conductivity type. A termination area (10) of the first epi layer includes a minimized epi doping concentration of the first conductivity type. The SiC-CB device also includes a device layer (16), which includes a second epi layer (14Z) disposed on the CB layer. An active area (6) of the second epi layer includes the first doping concentration of the first conductivity type. A termination area (10) of the device layer (16) includes the minimized epi doping concentration of the first conductivity type and a first plurality of floating regions (68) of the second conductivity type that form a junction termination (12Z) of the device.
摘要:
A silicon carbide (SiC) semiconductor device may include a CB layer defined in a first epitaxial (epi) layer having a first conductivity type. The CB layer may include a plurality of CB regions having a second conductivity type. The SiC semiconductor device may further include a device epi layer having the first conductivity type disposed on the CB layer. The device epi layer may include a plurality of regions having the second conductivity type. Additionally, the SiC semiconductor device may include an ohmic contact disposed on the device epi layer and a rectifying contact disposed on the device epi layer. A field-effect transistor (FET) of the device may include the ohmic contact, and a diode of the device may include the rectifying contact, where the diode and the FET are integrated in the device.
摘要:
The subject matter disclosed herein relates to silicon carbide (SiC) power devices and, more specifically, to SiC super-junction (SJ) power devices. A SiC-SJ device includes a plurality of SiC semiconductor layers of a first conductivity-type, wherein a first and a second SiC semiconductor layer of the plurality of SiC semiconductor layers comprise a termination region disposed adjacent to an active region with an interface formed therebetween, wherein the termination region of the first and the second SiC semiconductor layers comprises a plurality of implanted regions of a second conductivity-type, and wherein an effective doping profile of the termination region of the first SiC semiconductor layer is different from an effective doping profile of the termination region of the second SiC semiconductor layer.
摘要:
A disclosed super-junction (SJ) device includes a first epitaxial (epi) layer that forms a first SJ layer of the SJ device, and includes a second epi layer disposed on the first SJ layer that forms a device layer of the SJ device. An active area of the first and second epi layers includes a first set of SJ pillars comprising a particular doping concentration of a first conductivity type and a second set of SJ pillars comprising the particular doping concentration of a second conductivity type. A termination area of the first and second epi layers has a minimized epi doping concentration of the first conductivity type that is less than the particular doping concentration, and the termination area of the second epi layer includes a plurality of floating regions of the second conductivity type that form a junction termination of the SJ device.
摘要:
An integrated circuit includes a silicon carbide (SiC) epitaxial layer disposed on a SiC layer, wherein the SiC epitaxial layer has a first conductivity-type and the SiC layer has a second conductivity-type that is opposite to the first conductivity-type. The integrated circuit also includes a junction isolation feature disposed in the SiC epitaxial layer and having the second conductivity-type. The junction isolation feature extends vertically through a thickness of the SiC epitaxial layer and contacts the SiC layer, and wherein the junction isolation feature has a depth of at least about 2 micrometers (µm).
摘要:
The subject matter disclosed herein relates to semiconductor power devices and, more specifically, to junction termination designs for wide-bandgap (e.g., silicon carbide) semiconductor power devices. A disclosed semiconductor device (4) includes a first epitaxial (epi) layer (14A) disposed on a substrate layer (20), wherein a termination area (10) of the first epi layer has a minimized epi doping concentration of a first conductivity type (e.g., n-type). The device also includes a second epi layer (14Z) disposed on the first epi layer, wherein a termination area (10) of the second epi layer has the minimized epi doping concentration of the first conductivity type and includes a first plurality of floating regions of a second conductivity type (e.g., p-type) that form a first junction termination (12) of the device.
摘要:
A charge balanced (CB) trench-metal -oxide- semi conductor field-effect transistor (MOSFET) device may include a charge balanced (CB) layer defined within a first epitaxial (epi) layer that has a first conductivity type. The CB layer may include charge balanced (CB) regions that has a second conductivity type. The CB trench-MOSFET device may include a device layer defined in a second epi layer and having the first conductivity type, where the device layer is disposed on the CB layer. The device layer may include a source region, a base region, a trench feature, and a shield region having the second conductivity type disposed at a bottom surface of the trench feature. The device layer may also include a charge balanced (CB) bus region having the second conductivity type that extends between and electrically couples the CB regions of the CB layer to at least one region of the device layer having the second conductivity type.
摘要:
A charge balance (CB) field-effect transistor (FET) device may include a CB layer defined in a first epitaxial (epi) layer having a first conductivity type. The CB layer may include a set of CB regions having a second conductivity type. The CB FET device may further include a device layer defined in a device epi layer having the first conductivity type disposed on the CB layer. The device layer may include a highly-doped region having the second conductivity type. The CB FET device may also include a CB bus region having the second conductivity type that extends between and electrically couples a CB region of the set of CB regions of the CB layer to the highly-doped region of the device layer.
摘要:
Aspects of the present disclosure are directed toward designs and methods of manufacturing semiconductor devices, such as semiconductor charge balanced (CB) devices or semiconductor super-junction (SJ) devices. The disclosed designs and methods are useful in the manufacture of CB devices, such as planar CB metal-oxide semiconductor field-effect transistor (MOSFET) devices (12), as well as other devices.
摘要:
To manufacture a super-junction (SJ) layer of a SJ device, an epitaxial (epi) layer having a first conductivity type may be formed on an underlying layer, which may be formed from a wide-bandgap material. A first mask may then be formed onto a first portion of the epi layer, and a first set of SJ pillars may be selectively implanted into a second portion of the epi layer exposed by the first mask. Then, a second mask may be formed on the second portion of the epi layer that is self-aligned relative to the first mask. After removing the first mask, a second set of SJ pillars may be selectively implanted into the first portion of the epi layer. Removing the second mask may then yield the SJ layer.