Abstract:
A system for securely authenticating software Application Program Interfaces (APIs) includes a handshake protocol that is provided to validate whether the parties involved are licensed to use the system which includes rights to Intellectual Property (IP) and corresponding obligations. The handshake is a Challenge-Response protocol that includes several steps. First, a Claimant sends a request to a Verifier requesting access to a function through an API. The Verifier reacts to the request by outputting a Challenge that is sent to the Claimant. The Challenge is also retained by the Verifier for use in its internal calculation to verify the Claimant's response. The Claimant next processes the Challenge using components under the license, known as Hook IP, and issues a Response to the Verifier. The Verifier compares the possibly-correct Candidate Response from the Claimant to the known-correct Target Response and if a match occurs the Verifier allows the Claimant access to the API.
Abstract:
A process may be utilized by a DVR. The process characterizes a set of content as a plurality of segments as the set of content is received. Each of the segments has a segment length according to a predetermined time interval. Further, the process encrypts each of the segments with a corresponding content encryption key to generate a plurality of encrypted segments. The corresponding content encryption key for each of the segments is generated by the DRM component. In addition, the process stores each of the encrypted segments for playback with trick play features in accordance with an expiration content rule having a time limit on the temporary playability of the set of content.
Abstract:
The present invention discloses an apparatus and method for providing a secure move of a content decryption key within or between domains. Namely, the present invention addresses the single copy usage rule by restricting the movement of the decryption key instead of restricting the movement of the encrypted content itself.
Abstract:
A system for rating security levels a device according to the characteristics of functions executing within secure hardware components in the device. The security level of a host is placed in a digital certificate along with a corresponding private key at the time of manufacture of a device. The digital certificate can be provided to an inquiring device so that more comprehensive systme-wide security levels can be communicated and maintained. Where a network uses ticket-based key management protocols, the security rating, or level, is transferred from the certificate to an issued ticket. Inquiring devices can then check security levels of target devices by using certificates or tickets and perform transfers or grant authorizations accordingly. In a preferred embodiment a security ratings system uses six levels of security. The levels are structured to include characteristics about a device’s processing. That is, the levels provide information on the amount and type of sensitive processing that can occur in non-secure (or low security) circuitry or components within a device. This gives a bette indication of how prone a device is to threats that may be of particular concern in content delivery networks. Additional qualifiers can be optionally used to provide further information about a security level. For example, the degree of handling time management processing within secure hardware and whether a particular codec, watermarks of fingerprings are supported within secure hardware can each be represented by a policy qualifier.
Abstract:
An improved subset-difference method is provided. The improved method uses the value of a current content key to help generate the requisite difference keys. The requisite difference keys are then used to encrypt the next content key which will be delivered only to users who are supposed to remain in the group. Users who have the current content key are then able to generate the requisite difference keys which they can then use to decrypt the next content key. Using the decrypted next content key, the users are then able to continue to receive contents. Since previously revoked users do not have the current content key, they are unable to determine the next content key and thus are prevented from receiving future contents.
Abstract:
A digital rights management architecture for securely delivering content to authorized consumers. The architecture includes a content provider and a consumer system for requesting content from the content provider. The content provider generates a session rights object having purchase options selected by the consumer. A KDC thereafter provides authorization data to the consumer system. Also, a caching server is provided for comparing the purchase options with the authorization data. The caching server forwards the requested content to the consumer system if the purchase options match the authorization data. Note that the caching server employs real time streaming for securely forwarding the encrypted content, and the requested content is encrypted for forwarding to the consumer system. Further, the caching server and the consumer system exchange encrypted control messages (and authenticated) for supporting transfer of the requested content. In this manner, all interfaces between components are protected by encryption and/authenticated.
Abstract:
In accordance with a method for communicating a control word (CW) from a client such as an encryptor to a server such as the entitlement control message generator (ECMG) of a conditional access system (CAS), communication is established between the client and server over a secure connection. A control word to be encrypted is received by the client and encrypted using a first and second key. The first key is a global secret key (GSK) that is known to the client and the server without being communicated over the secure connection. The second key is a control word encryption key (CWEK) that is derived from a locally generated client nonce (CN) and a server nonce (SN) obtained from the server over the secure connection. The encrypted control word (ECW) is sent to the server over the secure connection.
Abstract:
In one embodiment, a method includes receiving a revocation request for revoking a model type of a device. A first computing device determines a list of device unit identifiers (UIDs) that are associated with the model type from a database. The device UIDs are for devices of the model type manufactured by a first entity. The method adds the list of device UIDs to a device revocation list and outputs the device revocation list to revoke a validity of secure information associated with devices associated with the list of device UIDs.
Abstract:
An embodiment of the present invention provides a method of transferring content within a system having a credit managing device, a content providing device and a user device. The method includes: registering the user device with the credit managing device; providing a universal credit to the user device from the credit managing device; providing encrypted content and a pre -rights generator from the content providing device to the user device at a first time without consuming the universal credit; generating a decryption key from the pre-rights generator a second time after the first time; and decrypting, via the decryption key, the encrypted content at the user device and consuming a portion of the universal credit.
Abstract:
A method, a digital content consumption device, and a conditional access system are disclosed. A network interface may receive in a digital content consumption device a public key message that includes an encrypted key. A processor may decrypt the encrypted key using a secret key to produce the transmitted public key, identify a region descriptor in the public key message, and determine the secret key based on the region descriptor.