Abstract:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
Abstract:
A variable reflectance rearview mirror for a vehicle, comprising: (a) a variable reflectance mirror element having a reflectivity that varies in response to an applied potential so as to exhibit at least a high reflectance state and a low reflectance state; (b) a self- cleaning, hydrophilic coating (300) applied to a front surface of said mirror element having a controlled surface morphology (312).
Abstract:
According to one embodiment of the present invention, an electrochromic rearview mirror assembly for a vehicle includes an electrochromic mirror (110, 920) having a variable reflectivity, a glare sensor (160, 234) for sensing levels of light directed towards the front element from the rear of the vehicle, an ambient sensor (232) for sensing levels of ambient light, a display (146, 170) positioned behind the partially transmissive, partially reflective portion of the reflector for displaying information therethrough; and a control circuit (230, 900) coupled to the sensors and the display. The control circuit determines whether daytime or nightime conditions are present as a function of the ambient light level sensed by the glare sensor to control a contrast ratio of light originating from the display and light reflecting from the partially transmissive, partially reflective area of the reflector.
Abstract:
A rearview mirror assembly is provided that includes a front substrate having a first surface and a second surface, a rear substrate having a third surface and a fourth surface, wherein the front substrate and the rear substrate define a cavity, a perimeter seal between the front substrate and the rear substrate, an electro-optic medium disposed in the cavity between the front substrate and the second substrate and bounded by the perimeter seal, wherein the front substrate and the second substrate have a shaped edge having continuously arcuate shape, and wherein an interface the first substrate and the second substrate is approximately 1 mm or less from an outermost portion of the rearview mirror assembly.
Abstract:
A vehicular rearview assembly that has a rounded outer perimeter edge to satisfy safety standards and contains an EC element having a complex peripheral ring, a front surface that is fully observable from the front of the assembly, and a user interface with switches and sensors that activate and configure, in cooperation with electronic circuitry of the assembly, pre-defined function(s) or device(s) of the assembly in response to the user input applied to the user interface. A complex peripheral ring may include multiple bands the structures of which is adapted to provide for specified optical characteristics of light, reflected off of the ring. Electrical communications between the electronic circuitry, the mirror element, and the user interface utilize connectors configured to exert a low contact force, onto the mirror element, limited in part by the strength of adhesive affixing the EC element to an element of the housing of the assembly.
Abstract:
An inventive rearview assembly (10) for a vehicle may comprise a mirror element (30) and a display including a light management subassembly (101b). The subassembly may comprise an LCD placed behind a transflective layer of the mirror element. Despite a low transmittance through the transflective layer, the inventive display is capable of generating a viewable display image having an intensity of at least 250 cd/m 2 and up to 3500 cd/m 2 . The display includes a novel backlighting subassembly (116) and novel optical components including a magnifying system (119), a depolarizer (121), a reflector (115), and a reflective polarizer (103b). The display may be configured to display an image having edges contoured to correspond to the edges of the mirror element.
Abstract:
A vibratory assembly having a housing. A transducer is operably coupled with the housing and has a substantially cylindrical shape. An isolator is at least partially disposed between the housing and the transducer. A lens cover is operably coupled with the transducer. A power source includes contacts operably coupled with the transducer. The power source supplies power to the transducer at various frequencies swept around a resonance harmonic to account for mass changes resulting from debris accumulation on the lens cover.
Abstract:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
Abstract:
To allow an electrochromic device to have little or no offset between its front and rear elements, an electrical conductor may be provided to electrically couple a portion of a first conductive layer provided on the rear surface of the front element with a portion of a second conductive layer provided on the front surface of the rear element. The electrical conductor may be in the form of a conductive portion of the seal. To prevent shorting across the electrochromic medium, at least one of the first and second conductive layers is separated into a first portion and a second portion that is electrically isolated from the first portion and is in electrical contact with the electrochromic material. An elastomeric bezel may be utilized. Also, an edge seal may optionally be employed so as to reduce the need or width of the bezel.
Abstract:
An electrochromic device, comprising: (a) a first substantially transparent substrate having an electrically conductive material associated therewith; (b) a second substrate having an electrically conductive material associated therewith; (c) an electrochromic medium contained within a chamber positioned between the first and second substrates which comprises: (1) at least one solvent; (2) at least one anodic material; and (3) at least one cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic; (d) wherein the chamber comprises a plug associated with a fill port; and (e) wherein the plug is at least partially cured with and/or comprises a phosphine oxide photo initiator.