Abstract:
A window apparatus of a vehicle includes a removable panel that selectively encloses an exterior opening of the vehicle that includes an electro-optic apparatus. The electro-optic apparatus is configured to adjust a transmittance of the window. A wireless connection interface is in connection with an interface surface of the removable panel, wherein the wireless connection interface communicates power and/or electrical signals from the vehicle to the electro-optic apparatus.
Abstract:
A vehicular microphone system (200) for post processing optimization of a microphone signal includes a first transducer (201) and second transducer (203) separated by a predetermined distance within an automotive mirror. A first high pass filter network (205) is connected to the first transducer (201) while a second high pass filter network (207) connected to the second transducer (203). A low frequency shelving filter (209) is used for receiving the output from the second high pass filter (207). A first all pass filter (211) is connected to the low frequency shelving filter (209) and a second all pass filter (213) is used in connection with the first all pass filter (211) for tailoring audio characteristics. A summing amplifier (215) is used for summing the output of the first high pass filter network (201, 205) and the second all pass filter network (203, 207, 209, 211, 213) such that the first transducer (201) and second transducer (203) operate with improved directivity resulting in enhanced signal-to-noise performance in a substantially noisy vehicular environment.
Abstract:
In at least one embodiment a fault sense circuit includes a current sense device, a voltage sense device, a power sense device, a sub-combination thereof or a combination thereof. The current sense device is positioned to sense a drive current provided to a load by a drive circuit. The voltage sense device is coupled across the current sense device and receives a threshold signal at a first input and provides an output signal on an output whose value is dependent upon whether a sense signal at a second input is above or below the threshold signal. A level of the threshold signal changes in response to a voltage level of a power supply that supplies the drive current to the drive circuit.
Abstract:
A unitary electro-optic window assembly includes a window element. A first substantially transparent substrate defines a first surface, a second surface, and a first peripheral edge. A second substantially transparent substrate defines a third surface, a fourth surface, and a second peripheral edge. The first and second substantially transparent substrates define a cavity there between. An electro-optic medium at least partially fills the cavity and is configured to reduce light transmissivity of the window element. A controller is adjacent to the window element and is in electrical communication therewith. The controller is configured to change a voltage applied to the electro-optic medium to change the light transmissivity of the window element. An interface is in electrical communication with the controller. A transparent dust cover is positioned over the window element, the controller, and the interface.
Abstract:
An electronics module proximate an exterior surface of a vehicle is disclosed. The module comprises a housing configured for mounting to an interior surface of the vehicle. An electronic circuit is enclosed in the housing. The electronic circuit comprises a proximity sensor and a sensor guard. The proximity sensor is configured to detect an object proximate the housing. The sensor guard is disposed between the interior surface and the proximity sensor and configured to limit a detection by the proximity sensor of an input originating from the exterior surface of a vehicle.
Abstract:
A variable transmittance window system is provided and includes at least one variable transmittance window. At least one energy harvesting device generates electrical power. A power supply circuitry maximizes the electrical power. At least one energy storage device is charged by the electrical power. A slave control circuitry controls a transmittance state of the at least one variable transmittance window, the slave control circuitry being powered by at least one of the power supply circuitry and the at least one energy storage device. A master control circuitry monitors the slave control circuitry, wherein the master control circuitry is operable to issue a wireless override signal to the slave control circuitry such that the slave control circuitry changes the transmittance state of the at least one variable transmittance window to an override transmittance state.
Abstract:
An electro-optic element is disclosed. The electro-optic element may comprise a voltage control device electrically connected to an electrode of the electro-optic medium. In some embodiments, the voltage control device may be a transistor. The voltage control device may be operable to receive a supply voltage and to output an activation voltage to an electro-optic medium of the electro-optic element. Additionally, the electro-optic element may further comprise a control circuit. The control circuit may be configured to receive at least one feedback signal. Based, at least in part, on the feedback signals, the control circuit may accordingly control the activation voltage output by the voltage control devices.
Abstract:
A detection system includes at least one sensor configured to measure a presence of airborne particles and at least one amplifier circuit in communication with the at least one sensor. The amplifier circuit is configured to monitor a charge generated by the at least one sensor over a time interval. The system further includes a controller configured to monitor the charge accumulated in the at least one amplifier circuit from the at least one sensor at the time interval. In response to the charge of the at least one amplifier circuit, the controller detects the presence of the airborne particles.
Abstract:
An autobias vehicular microphone system (300) includes a microphone (301) uses an amplifier (306) for amplifying an output of the microphone. A first feedback path (308) provides an amplifier output signal to the amplifier input for providing amplifier linearity and a second feedback path (305) is used for providing bias to an voltage reference (303). The voltage reference (303) operates to provide an autobias to the amplifier (306) based upon amplifier loading. Thus, a DC feedback loop works as an average voltage sensing circuit operating to center the amplifier (306) to an operating point near one half its supply voltage. By allowing the bias point to vary, a constant clip level can be maintained depending on varying load conditions of electronic devices (307, 309, 311) using the microphone (301).
Abstract:
A rearview assembly comprising a rearview element, a rearview element support assembly supporting the rearview element and a mount adjacent the housing. The mount is configured to connect the rearview assembly to a windshield. At least one of the rearview element support assembly and the mount comprises a crush bracket having at least two legs adapted to be compressed as a force strikes a front of the rearview element. The crush bracket can include at least one tab contacting a heat emitting component and/or an electrically conductive component of a circuit to provide a heat sink for the heat emitting component or a ground for the electrically conductive component, respectively.