Abstract:
A fuel dispenser comprises fuel flow piping defining a flow path from a source of fuel toward a fueling nozzle. A plurality of fuel handling components are disposed along the fuel flow piping. Control electronics are in operative communication with the fluid handling components. The fuel dispenser includes network circuitry operative to create a wireless peer to peer network with an adjacent vehicle. After creation of such network, the control electronics receive transaction information from the vehicle in electronic form via the network circuitry, and cause at least one function of the fuel dispenser to be controlled for a transaction based on the transaction information.
Abstract:
A fuel dispenser comprises fuel flow piping defining a flow path from a source of fuel toward a fueling nozzle. A plurality of fuel handling components are disposed along the fuel flow piping. Control electronics, in operative communication with the fluid handling components, include a multi-core processor having at least two processor cores located on a common integrated circuit chip, the at least two processor cores utilizing different operating systems in an asynchronous manner. For example, a first processor core of the at least two processor cores may utilize a real-time operating system and a second processor core of the at least two processor cores may utilize a non-real time operating system.
Abstract:
Systems and methods for managing loyalty applications in fuel dispensing environments are provided. At least one processor can execute a master mobile application comprising an interface for rendering content and/or accepting input. The master mobile application can be configured to communicate with one or more dispensing components to obtain parameters regarding product dispensing, display the parameters on a portion of the interface, and invoke a loyalty application for executing on another portion of the interface.
Abstract:
A fuel dispenser comprises fuel flow piping defining a flow path from a source of fuel toward a fueling nozzle. A plurality of fuel handling components are disposed along the fuel flow piping. Control electronics are in operative communication with the fluid handling components. The fuel dispenser further includes network circuitry operative to create an ad hoc wireless network with an adjacent vehicle and, after creation of such network, exchange security indicia with the vehicle that identifies the fuel dispenser as a trusted road side unit. Thereafter, the fuel dispenser facilitates a communication link with a remote server for bulk data transfer to the vehicle of information unrelated to a fueling transaction.
Abstract:
A method of performing a fueling transaction via an application installed on a mobile device, such as a smart phone. One step of the method involves receiving at the mobile device a short range wireless initiation signal directly from a fuel dispenser. The wireless initiation signal contains information indentifying the fuel dispenser. In response to the wireless initiation signal, an application is automatically launched on the mobile device. Input is received into the mobile device from a customer, which is interpreted by the application to correspond to at least one selection made by the customer. Payment information of the customer is transmitted from the mobile device to a remote cloud server so that the transaction can be authorized. As fuel is dispensed from the fuel dispenser, at least one of fueling information and promotional information is received at the mobile device.
Abstract:
A vending machine can include a touch display and a touch controller operatively connected to the touch display and configured to transmit display data to the touch display and receive input data from a touchscreen function of the touch display. The vending machine also includes a secure device operatively connected to the touch display for securing the display by managing touch input information provided to one or more applications based on the input data received from the touchscreen functionality. The vending machine has a processor operatively connected to the secure device for communicating access requests for the touch display to the secure device from the one or more applications along with an indication of whether the one or more applications are signed by an authorized entity. The secure device manages the touch input information provided to the one or more applications further based at least in part on the indication.
Abstract:
A retail fueling environment comprising a plurality of fuel dispensers located in a forecourt area of the fueling environment. A central controller operative to communicate with a remote payment authorization system to authorize payment of fueling transactions is also provided. The fuel dispensers and the central controller have a respective wireless communication device associated therewith such that the fuel dispensers can communicate with the central controller via wireless transmission. Preferably, the wireless transmission utilizes 802.11p protocol.
Abstract:
A fuel dispenser comprises fuel flow piping defining a flow path from a source of fuel toward a fueling nozzle. A plurality of fuel handling components are disposed along the fuel flow piping. Control electronics are in operative communication with the fluid handling components. A payment system includes a PIN pad that transmits secure tokens which are preferably cryptographically unique and independent such as not to be a function or derivative of network keys or user PIN. The tokens are then received and acted upon by a second subsystem to render PIN entry display data.
Abstract:
A fuel flow meter assembly for detecting fraud caused by tampering. The fuel flow meter assembly comprises a fuel flow meter comprising a shaft and a fiber optic displacement sensor operatively connected to the fuel flow meter shaft for generating information representative of an amount of fuel delivered through the fuel flow meter. The fuel flow meter assembly also comprises at least one transponder coupled with one of the fuel flow meter shaft and the displacement sensor. Further, the fuel flow meter assembly comprises at least one interrogator electronics coupled with the other of the fuel flow meter shaft and the displacement sensor. The at least one interrogator electronics is configured for remote electronic communication with the at least one transponder.