Abstract:
A method and system for providing a magnetic element and memory utilizing the magnetic element are described. The magnetic element includes a reference layer, a nonferromagnetic spacer layer, and a free layer. The reference layer has a resettable magnetization that is set in a selected direction by a magnetic field generated externally to the reference layer. The reference layer is also magnetically thermally unstable at an operating temperature range and has KuV/kBT is less than fifty five. The spacer layer resides between the reference layer and the free layer. In addition, the magnetic element is configured to allow the free layer to be switched to each of a plurality of states when a write current is passed through the magnetic element.
Abstract:
A method and system for providing a magnetic element is described. The magnetic element includes a first pinned layer, a first spacer layer, a free layer, a second spacer layer, and a second pinned layer. The first and second pinned layers have first and magnetizations oriented in first and second directions, respectively. The first and second spacer layers are nonferromagnetic. The first and second spacer layers are between the free layer and the first and second pinned layers, respectively. The magnetic element is configured either to allow the free layer to be switched to each of multiple states when both a unidirectional write current is passed through the magnetic element and the magnetic element is subjected to a magnetic field corresponding to the each states or to allow the free layer to be switched to each of the plurality of states utilizing a write current and an additional magnetic field that is applied from at least one of the first pinned layer and the second pinned layer substantially only if the write current is also applied.
Abstract:
A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer has a magnetic anisotropy, at least a portion of which is a biaxial anisotropy. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
Abstract:
A method and system for providing a magnetic element and a memory using the magnetic element are described. The method and system include providing a pinned layer, providing a spacer layer, and providing a free layer. The spacer layer is nonferromagnetic and resides between the pinned layer and the free layer. At least the free layer has a first end portion, a second end portion and a central portion between the first end portion and the second end portion. The first end portion, the second end portion and the central portion form an S-shape. At least one of the first end portion and the second end portion includes a curve. The magnetic element is also configured to allow the free layer to be switched at least in part due to spin transfer when a write current is passed through the magnetic element.
Abstract:
A method and system for providing a magnetic element and a memory incorporating the magnetic element is described. The method and system for providing the magnetic element include providing a pinned layer, a spacer layer, and a free layer. The free layer includes granular free layer having a plurality of grains in a matrix, the spacer layer residing between the pinned layer and the free layer. The magnetic element is configured to allow the granular free layer to be switched due to spin-transfer when a write current is passed through the magnetic element.