Abstract:
A rotary steerable drilling system includes a housing, a drive shaft passing through the housing, a shaft/housing locking mechanism disposed to selectively engage the drive shaft and the housing, and an anti-rotation mechanism disposed to engage a wellbore wall. Shaft/housing locking mechanism includes a first configuration in which rotation of the drive shaft is independent of the housing, and a second configuration in which rotation of the drive shaft causes rotation of the housing. Anti-rotation mechanism includes a first configuration in which the anti-rotation mechanism extends radially relative to the drive shaft, and a second configuration in which the anti-rotation mechanism retracts from engagement with the wellbore wall. A timing mechanism may be employed to transition the anti-rotation mechanism from the first configuration to the second configuration before the shaft/housing locking mechanism transitions from the first configuration to the second configuration.
Abstract:
A system for extending an electrical cable through a tubular member, including the electrical cable, a first cable hanger component for connecting with a first tubular member end, and a second cable hanger component for connecting with a second tubular member end. A method for extending an electrical cable through a tubular member, including mechanically and electrically connecting the electrical cable with the second cable hanger component, extending the electrical cable through the tubular member, connecting the second cable hanger component with the second tubular member end, extending the electrical cable through the first cable hanger component, connecting the first cable hanger component with the first tubular member end, mechanically and electrically connecting the electrical cable with the first cable hanger component, and tensioning the electrical cable.
Abstract:
Multi-functional fluid-driven power generation units, modular power generation units, and drilling systems with a power generation unit are presented herein. A power generation unit for powering one or more downhole tools in a drill string is disclosed. The power generation unit includes a housing that is configured to couple to a downhole portion of the drill string and receive at least a portion of fluid flowing through the drill string. The power generation unit also includes a fluid-driven motor assembly with a drive shaft configured to output rotational drive forces generated by the motor assembly. An electrical generator is operatively coupled to the drive shaft and configured to convert the rotational drive forces generated by the motor assembly into electrical power. In addition, a hydraulic pump is operatively coupled to the drive shaft and configured to convert the rotational drive forces generated by the motor assembly into hydraulic power.
Abstract:
A bearing assembly for a downhole drilling motor can include a housing having an inner wall, an outer bearing race within the housing, and an inner bearing race. The outer bearing race can include a reduced-diameter portion forming a gap between the outer bearing race and the inner wall of the housing to allow for radial displacement of the outer bearing race relative to the housing. The design combines the functions of a bearing and a compliant feature into a single unit. The design will also provide reliability of performance in high dogleg and short bit-to-bend applications where radial loads are extreme and bearings frequently fail.
Abstract:
A stabilizer device is provided for a mud motor drilling assembly. The stabilizer device may be mounted to a motor housing having one or more grooves or ridges. The stabilizer device may include a stabilizer body, a threaded portion, and a clamp. The threaded portion may be positioned between the one or more grooves or ridges and the clamp. The threaded portion may include an external surface having threads. The threads on the external surface of the threaded portion of the stabilizer device may correspond to threads on an internal surface of a clamp. The threaded coupling of the clamp to the stabilizer device may couple the stabilizer device to the motor housing at the one or more grooves or ridges.
Abstract:
Various embodiments disclosed relate to bearing assembly for drilling a subterranean formation and methods of using the same. In various embodiments, the present invention provides a method of drilling a subterranean formation. The method includes flowing a drilling fluid through a drill string disposed in the subterranean formation, with the drill string including a bottom hole assembly including a bearing assembly including a low flow bearing. The method includes flowing a first part of the drilling fluid into contact with the low flow bearing, while simultaneously flowing a second part of the drilling fluid through a bypass channel around the low flow bearing. The method also includes discharging the first and second part of the drilling fluid between the bottom hole assembly and the subterranean formation.
Abstract:
A process of manufacturing a downhole tool having hardfacing erosion protection formed on the inner surface of a confined space having a cross-sectional width of at least 26 millimeters, such as an inlet port or an inner bore of a drilling tool component. A downhole tool manufactured according to the disclosed laser cladding process for use in a method of drilling a subterranean wellbore.
Abstract:
A clamping assembly may include a split-ring device and bearing for coupling to a driveshaft. The split-ring device may comprise split-ring shells having protrusions on an interior radial surface for positioning in grooves adjacent to radial protrusions on the driveshaft. In some aspects, the split-ring shells may include tabs corresponding to cavities on a first bearing for coupling the split-ring shell to the first bearing. In other aspects, the split-ring shells may be sized to create one or more gaps when positioned on the driveshaft. The first bearing may include one or more corresponding tabs for positioning in the one or more gaps created by the split-ring shells. A second bearing may be threadably coupled to the first bearing to suppress the axial and rotational movement of the clamping assembly separate from the driveshaft.
Abstract:
Methods and apparatus are disclosed for retaining components in a downhole motor in the event of a mechanical separation or failure of one or more components therein. As described, the retention mechanism does not require a threaded connection to components of the mud motor drivetrain. Downhole motor assemblies including the new catch mechanism also include a structural element to engage the catch assembly and the components to which it is attached in the event of a mechanical failure within the mud motor assembly.
Abstract:
A drilling assembly includes a straight housing in which a mud motor assembly is mounted. The mud motor includes a rotor that rotates within a stator. The rotor has an axial centerline substantially parallel with the housing. A drivetrain is coupled between the rotor and a driveshaft. The driveshaft is coupled to a drill head. The driveshaft has a centerline that is non-coincident with (i.e., offset or angled) the axial centerline. The angle between the driveshaft centerline and the axial centerline may be fixed or variable. The angle may be variable in response to an axial force, imparted to the rotor, that is transferred to the driveshaft through the drivetrain. Additional apparatus, systems, and methods are disclosed.