Abstract:
A system and method for forming microlattice structures of large thickness. In one embodiment, a photomonomer resin is secured in a mold having a transparent bottom, the interior surface of which is coated with a mold-release agent. A substrate is placed in contact with the top surface of the photomonomer resin. The photomonomer resin is illuminated from below by one or more sources of collimated light, through a photomask, causing polymer waveguides to form, extending up to the substrate, forming a microlattice structure connected with the substrate. After a layer of microlattice structure has formed, the substrate is raised using a translation-rotation system, additional photomonomer resin is added to the mold, and the photomonomer resin is again illuminated through the photomask, to form an additional layer of microlattice structure. The process is repeated multiple times to form a stacked microlattice structure.
Abstract:
A composition for forming a microlattice structure includes a photopolymerizable compound and a flame retardant material A. microlattice structure includes a plurality of struts interconnected at a plurality of nodes, the struts including: a copolymer including a reaction product of a photopolymerizable compound and a flame retardant material. A microlattice structure includes a plurality of struts interconnected at a plurality of nodes, the struts including; a polymer including a reaction product of a photopolymerizable compound; and a flame retardant material.
Abstract:
Methods of manufacturing a structure having at least one plated region and at least one unplated region. The method includes plating a metal on a polymer structure having a first region accepting the metal and a second region unreceptive to the metal plating. The first region may include fully-cured polymer optical waveguides and the second region may include partially-cured polymer optical waveguides. The first region may include a first polymer composition and the second region may include a second polymer composition different than the first polymer composition.
Abstract:
Architected materials with superior energy absorption properties when loaded in compression. In several embodiments such materials are formed from micro-truss structures composed of interpenetrating tubes in a volume between a first surface and a second surface. The stress-strain response of these structures, for compressive loads applied to the two surfaces, is tailored by arranging for some but not all of the tubes to extend to both surfaces, adjusting the number of layers of repeated unit cells in the structure, arranging for the nodes to be offset from alignment along lines normal to the surfaces, or including multiple interlocking micro-truss structures.