Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed for hardware queue scheduling for multi-core computing environments. An example apparatus includes a first core and a second core of a processor, and circuitry in a die of the processor, at least one of the first core or the second core included in the die, the at least one of the first core or the second core separate from the circuitry, the circuitry to enqueue an identifier to a queue implemented with the circuitry, the identifier associated with a data packet, assign the identifier in the queue to a first core of the processor, and in response to an execution of an operation on the data packet with the first core, provide the identifier to the second core to cause the second core to distribute the data packet.
Abstract:
Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache ("LLC"), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.
Abstract:
Examples include techniques for coalescing doorbells in a request message. Example techniques include gathering doorbells to access a device. The gathered are combined in a cache line structure and the cache line structure is written to a cache or buffer for a central processing unit in a single write operation.
Abstract:
Technologies for a distributed hardware queue manager include a compute device having a procesor. The processor includes two or more hardware queue managers as well as two or more processor cores. Each processor core can enqueue or dequeue data from the hardware queue manager. Each hardware queue manager can be configured to contain several queue data structures. In some embodiments, the queues are addressed by the processor cores using virtual queue addresses, which are translated into physical queue addresses for accessing the corresponding hardware queue manager. The virtual queues can be moved from one physical queue in one hardware queue manager to a different physical queue in a different physical queue manager without changing the virtual address of the virtual queue.