Abstract:
Techniques for reducing multi-reflection noise via compensation structures are described herein. An example system includes a capacitive component. The example system further includes a capacitive compensation structure coupled to two ends of the capacitive component. The example system includes a partially meshed ground plane coupled to one side of a dielectric substrate. The example system also includes one or more signal conductors coupled to another side of the dielectric substrate and electrically coupled to the capacitive component. The one or more signal conductors are located parallel to a meshed length of the partially meshed ground plane.
Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques to provide a interface component including a housing comprising a first shell portion and a second shell portion, the first shell portion forming an extended portion for the housing and comprising a retention track engageable a counterpart retention track. The interface component to include a printed circuit board disposed within the housing, the printed circuit board comprising a plurality of contact pins each comprising a contact hole and a retention bump and a socket to couple with a stud.
Abstract:
Various embodiments disclosed relate to a circuit. The circuit includes a transceiver adapted to generate a signal. A stranded transmission line is connected to the transceiver. The signal is then transmitted through the first pair of conductive strands.
Abstract:
Embodiments herein disclose techniques for apparatuses and methods for making a slot antenna on a PCB with a cutout. A PCB may include a metal layer. The metal layer may include a cavity to be a first radiating element of an antenna, and a slot to be a second radiating element of the antenna. In addition, the cavity may extend to be the cutout of the PCB through other layers of the PCB. The first and second radiating elements may provide a determined transmission frequency for the antenna. The metal layer may further include a portion of a transmission line of the antenna, and the transmission line is in contact with the cavity and the slot. A package may be affixed to the PCB, where a portion of the package may be within the cutout of the PCB. Other embodiments may be described and/or claimed.
Abstract:
Microelectronic devices including an electromagnetic shield over a desired portion of a substrate. The magnetic shield is formed of conductive particles within a selectively curable layer, such as a solder resist material. After application to the substrate, the conductive particles are allowed to settle to form a conductive structure to serve as an electromagnetic shield. The electromagnetic shield can be formed primarily over regions of the substrate containing conductive traces coupled in the package to communicate signals presenting a risk of causing electromagnetic interference with other devices.
Abstract:
A system for board-to-board interconnect is described herein. The system includes a first printed circuit board (PCB) having a first recess along a first edge of the first PCB that exposes a first solder pad on a layer of the first PCB. The system also includes a second PCB having a second recess along a second edge of the second PCB that exposes a second solder pad on a layer of the second PCB. The second recess is complementary to the first recess to allow the first PCB to mate with the second PCB. The first solder pad is aligned with the second solder pad when the first PCB is mated with the second PCB. The system additionally includes an assembly configured to electronically couple the first solder pad with the second solder pad.
Abstract:
Methods and systems may provide for a gyratory sensing system (GSS) for extending the human machine interface (HMI) of an electronic device, particularly small form factor, wearable devices. The gyratory sensing system may include a gyratory sensor and a rotatable element to engage the gyratory sensor. The rotatable element may be sized and configured to be easily manipulated by hand to extend the HMI of the electronic device such that the functions of the HMI may be more accessible. The rotatable element may include one or more rotatable components, such as a body, edge or face of a smart watch, that each may be configured to perform a function upon rotation, such as resetting, selecting, and/or activating a menu item.
Abstract:
Described is an apparatus which comprises: a pre-driver coupled to a transmitter, the transmitter having a differential output; and a tuning circuit operable to couple to the differential output to tune the pre-driver of the transmitter according to a common mode noise signature of a common mode signal derived from the differential output.