Abstract:
A communication device can include a processor configured to receive, on a radio channel, an uplink radio transmission in a first waveform format from a terminal device that instructs the communication device to forward the uplink radio transmission to a network access node, and transmit, on the radio channel, the uplink radio transmission to the network access node with a preamble in a second waveform format to protect the uplink radio transmission from collisions.
Abstract:
A communication device can include a processor configured to receive, on a radio channel, an uplink radio transmission in a first waveform format from a terminal device that instructs the communication device to forward the uplink radio transmission to a network access node, and transmit, on the radio channel, the uplink radio transmission to the network access node with a preamble in a second waveform format to protect the uplink radio transmission from collisions.
Abstract:
A communication device for a vehicular radio communications includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices, determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology, and transmit the channel resource allocation to the plurality of vehicular communication devices.
Abstract:
A method of processing tracing information of a radio signal received via a radio channel is provided. The method may include determining the tracing information based on the radio signal, determining at least one channel parameter representing a radio channel condition of the radio channel, compressing the tracing information based on the determined at least one channel parameter, and storing the compressed tracing information in a memory.
Abstract:
Reporting techniques for reference signal received quality (RSRQ) measurements are described. In one embodiment, for example, user equipment (UE) may comprise at least one radio frequency (RF) transceiver, at least one RF antenna, and logic, at least a portion of which is in hardware, the logic to measure a received signal strength indicator (RSSI), determine a reference signal received quality (RSRQ) measured quantity value based on the measured RSSI, and map the RSRQ measured quantity value to an RSRQ reporting value according to an RSRQ measurement report mapping scheme comprising an extended RSRQ reporting range according to which one or more defined RSRQ reporting values correspond to RSRQ measured quantity values exceeding -3 dB. Other embodiments are described and claimed.
Abstract:
Technologies for cross-layer task distribution include a compute device configured to identify pending communication tasks and pending compute tasks, and estimate a processing load of the pending communication tasks. The compute device is further configured to determine a total processing budget of communication processor(s) of the compute device based on computation resources of the communication processor(s) and determine whether excess processing budget is available to process at least one of the pending compute tasks. Additionally, in response to a determination that the excess processing budget is available to process one or more pending compute tasks, the compute device is configured to allocate at least one of the pending compute tasks to be processed by at least one of the communication processors. Other embodiments are described and claimed.
Abstract:
An application management apparatus for controlling tasks, including a task split and response merge circuit configured to divide an application into a plurality of tasks and associate respective Key Performance Indicator (KPI) attributes to the plurality of tasks; and a task management circuit configured to allocate each of the plurality of tasks to a first or second Radio Access Technology (RAT) based on the KPI attributes, and to derive a plurality of task responses from the first or second RATs to which the respective plurality of tasks are allocated, wherein the task split and response merge circuit is further configured to merge the task responses to select the first or second RAT to run the application.
Abstract:
A communication circuit arrangement may include a cell search circuit configured to compare a detected synchronization sequence of a detected candidate cell with a predetermined reference synchronization sequence to generate a demodulated synchronization sequence including a plurality of samples, determine a phase variance between the plurality of samples of the demodulated synchronization sequence, and compare the phase variance to a detection threshold to classify the detected candidate cell as a real cell or a false cell.
Abstract:
The present disclosure relates to a method for blind decoding a signal in a decoder of a mobile device. The method comprises receiving a channel coded signal; testing a plurality of hypotheses for the decoder that are not related to channel decoding by decoding the channel coded signal to generate a hypothesis specific decoded, channel coded signal and correlating a local channel coded reference sequence against a presumed corresponding section of the hypothesis specific decoded, channel coded signal for each of the plurality of hypotheses to generate a plurality of test results. The method further comprises determining a best hypothesis based on the plurality of test results and channel decoding a hypothesis specific decoded, channel coded signal for the best hypothesis to generate a channel decoded signal.
Abstract:
A communication device comprises a receiver including at least two receive antennas and configured to receive at least one reference signal of a plurality of reference signals, each reference signal being transmitted from at least one base station at a predefined reference signal transmission time; a controller configured to switch between at least two receive configurations of the at least two antennas during a reception period of the at least one reference signal; and a signal quality determiner configured to determine a parameter indicative of a first signal quality of the received reference signal for each receive configuration.