Abstract:
A communication device for a vehicular radio communications includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices, determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology, and transmit the channel resource allocation to the plurality of vehicular communication devices.
Abstract:
A wireless device having a receiver configured to receive, from a second wireless device, information about one or more infrastructure devices having respective coverage areas in which the second wireless device traveled, wherein the information comprises time stamp information and geographical information of the second wireless device when the information was observed; and a processor configured to process the information of the one or more infrastructure devices to determine to which of the infrastructure devices the wireless device is to be handed over.
Abstract:
A communication terminal is described comprising a transceiver configured to support radio communication with a cellular radio communication network via a first frequency band using a first bandwidth and a controller configured to control the transceiver to directly communicate with another communication terminal via a second frequency band using a second bandwidth, wherein the second frequency band is located in a spectrum which is license free.
Abstract:
A mobile terminal device includes a radio processing circuit and a baseband processing circuit adapted to interact with the radio processing circuit. The mobile terminal device is configured to identify a first set of frequency resources allocated for a wireless channel by a mobile communication network, calculate a first channel response estimate for a second set of frequency resources of the wireless channel using a reference signal derived from a second mobile terminal device, wherein the reference signal is distributed across the second set of frequency resources of wireless channel, calculate a second channel response estimate for the first set of frequency resources of the wireless channel using the first channel response estimate, and apply the second channel response estimate to schedule data transmission intended for the second mobile terminal device over the wireless channel.
Abstract:
Embodiments include apparatuses, methods, and systems that may test a UE for its idle period distribution. A test system may identify a set of bins in which a union of the set of bins may be equal to a contention window, wherein each individual bin of the set of bins may have an associated probability. A first bin of the set of bins may have a first associated probability, and a second bin of the set of bins may have a second associated probability that is larger than the first associated probability. Each individual idle period may be assigned to a corresponding bin of the set of bins. A UE may have a pass status or a failure status based on the individual idle periods assigned to the corresponding bin of the set of bins, and the associated probability for the bin. Other embodiments may also be described and claimed.
Abstract:
Devices, methods, user equipment (UE), evolved node B (eNB), and storage media with coexistence operations for transmissions and testing of transmission to verify pause use are provided. In one embodiment, an apparatus initiates configuration of the UUT and communication of a transmit command to the UUT to cause the UUT to perform a TxOP operation. Channel availability on the first channel is then monitored to identify a pause in the TxOP operation and to determine whether a duration of the pause is greater than or equal to a minimum pause duration. In other embodiments, TxOP durations and resumption following an interruption are tested.
Abstract:
A method of processing tracing information of a radio signal received via a radio channel is provided. The method may include determining the tracing information based on the radio signal, determining at least one channel parameter representing a radio channel condition of the radio channel, compressing the tracing information based on the determined at least one channel parameter, and storing the compressed tracing information in a memory.
Abstract:
Technologies for cross-layer task distribution include a compute device configured to identify pending communication tasks and pending compute tasks, and estimate a processing load of the pending communication tasks. The compute device is further configured to determine a total processing budget of communication processor(s) of the compute device based on computation resources of the communication processor(s) and determine whether excess processing budget is available to process at least one of the pending compute tasks. Additionally, in response to a determination that the excess processing budget is available to process one or more pending compute tasks, the compute device is configured to allocate at least one of the pending compute tasks to be processed by at least one of the communication processors. Other embodiments are described and claimed.
Abstract:
An application management apparatus for controlling tasks, including a task split and response merge circuit configured to divide an application into a plurality of tasks and associate respective Key Performance Indicator (KPI) attributes to the plurality of tasks; and a task management circuit configured to allocate each of the plurality of tasks to a first or second Radio Access Technology (RAT) based on the KPI attributes, and to derive a plurality of task responses from the first or second RATs to which the respective plurality of tasks are allocated, wherein the task split and response merge circuit is further configured to merge the task responses to select the first or second RAT to run the application.
Abstract:
A method and device for controlling access to a limited access spectrum, the method including: authorizing a mobile communications device in a predefined geographic area to communicate via the limited access spectrum, wherein access by the mobile communications device to the limited access spectrum is based on a user profile defining access rights to the limited access spectrum; determining a load level of communications on the limited access spectrum in the predefined geographic area; and allocating a communications timing parameter to the mobile communications device based on the load level. In addition, the communications timing parameter may be further based on a priority status of a recipient of the communication from the mobile communications device.