Abstract:
A hand displaceable laser welding gun is configured with an elongated support column extending along a longitudinal axis and made from lightweight material. A support plate is displaceably mounted to the column while supporting thereon an optical head which is provided with beam-guiding optics. The optics is configured to direct a laser beam along a path towards a welding zone through a protective window of the optical head. The laser welding gun further is structured with a first arm mounted to the support plate and extending along a longitudinal axis of the gun diametrically opposite to the optical head. The inner surface of the displaceable arm has an inner surface defining a tunnel which is aligned with the optical head and axially traversed by the laser beam, a first axially flowing stream of pressurized gaseous medium, and a second axially flowing stream of gaseous medium. The second stream, entering the tunnel at a pressure lower than that one of the first stream in response to a pressure gradient generated in the column, does not generate vortexes within the column. The first and second streams exit through the downstream end of the tunnel next to the welding zone. As the streams flow out, they carry out welding debris flowing within the tunnel before the debris reach the protective window of the optical head.
Abstract:
The present invention provides a multi-fiber laser output system that delivers at least three fiber outputs arranged in a circumferential pattern or otherwise at least four distinct laser outputs from a single processing cable. The present invention allows for controlling the at least three laser modules and delivering their respective outputs in a pre-determined sequence in a single processing cable, thereby providing multiple processing steps on a work piece that heretofore required separate optics for each beam. The at least three laser outputs are optimized for use in creating spot welds, seam welds or virtual wobble welds when used for seam welding.
Abstract:
The inventive laser is configured with a plurality of pigtailed multimode (MM) diode lasers each receiving a direct input current at a room temperature which is maintained to be within a 20-25° C inside the housing of the laser. The diode lasers each are configured to operate at a desired wavelength in an optimal operational range, in which the diode laser operates with a WPE range between 63% and 75%. The direct current inputted in each diode laser is selected to be below a threshold at an efficiency curve of the diode laser after which the efficiency of the diode laser starts decreasing while an output power of the diode laser continues to increase. The laser is further configured with a fiber gain block having an active fiber medium which is pumped with the cumulative pump output and operative to emit a laser output in a power range between hundreds of watts and tens and even hundreds of kilowatts at the desired wavelength in an optimal operation range. The optimal operational ranges of respective MM diode lasers and fiber gain block are matched to achieve a superposition of respective efficiency maximums providing an overall maximum system efficiency up to 55%.
Abstract:
A sensor unit for detecting Rayleigh scattering of laser light, guided in a fiber along a light path, is configured with a holder. The holder has a U- shaped recess centered along an axis which extends transversely to the light path. The curved bottom of the recess has a matte reflective surface and is configured with such a radius of curvature that Rayleigh scattered light indicated on the bottom is collected in a focal plane of a light input window of a meter coaxial with the recess. The reflected amount of the Rayleigh scattering on the light input window is sufficient to provide a measurement data which deviates from a reference value at no more than about ±3%.
Abstract:
A method of inducing light losses at a parasitic wavelength in a fiber laser system includes providing a wavelength discriminator (WD) spaced from and between feeding and process fibers or from the end output of the feeding fiber so as to induce losses of light at parasitic wavelength. The device implementing the disclosed method is configured with a laser source, the delivery fiber and WD spaced at a distance between the surface to be treated and the end of the delivery fiber, wherein the WD receives the parasitic light over free space and is configured as a dichroic filter inducing losses to the light at the parasitic wavelength.
Abstract:
A robotically operated laser seam stepper is configured with an elongated support column extending along a longitudinal axis and made from lightweight material. A support plate is displaceably mounted to the column while supporting thereon an optical head which is provided with optics. The optics is configured to direct a laser beam along a path towards a welding zone through a protective window of the optical head. The laser seam stepper further is structured with a first arm mounted to the support plate and extending along a longitudinal axis of the stepper diametrically opposite to the optical head. The inner surface of the displaceable arm defines a tunnel which is aligned with the optical head and axially traversed by the laser beam, a first axially flowing stream of pressurized gaseous medium, and by a second axially flowing stream of gaseous medium. The second stream, entering the tunnel at a pressure lower than that one of the first stream in response to a pressure gradient generated in the column, does not generate vortexes within the column. The first and second streams exit through the downstream end of the tunnel next to the welding zone. As the streams flow out, they carry out welding debris from the tunnel.
Abstract:
An ultra-high power fiber laser system includes a multimode combiner which is configured with a plurality of low mode fibers bundled together and tapering toward its downstream end. The system further includes a clad mode absorber extending along the tapered downstream end of the combiner and extending over a portion of the combiner's output fiber. The absorber is configured with sequentially located zones which are provided with respective refractive indices. In a forward propagating direction of light signal, the upstream zone includes polymeric material with the refractive index higher than that of the cladding of the combiner end fiber. This zone is configured to remove the back reflected core guided light bled into the cladding of the combiner through a splice between combiner end and output fibers. The intermediate zone includes polymeric material configured with a refractive index lower than that of the cladding of the combiner output fiber so it can prevent clad guided signal light from decoupling the cladding under the material. The downstream zone is configured with, polymeric material having a refractive index lower than that of the cladding of the combiner output fiber. The polymeric material of the downstream zone is impregnated with a plurality of light diffusers scattering high numerical aperture rays of the clad-guided signal light.
Abstract:
A high power fiber laser system is configured with a combiner end fiber spliced to a combiner output fiber. The system further includes a light stripper extending along the combiner end and output fibers and configured with sequentially located zones 'which are provided with respective refractive indices. In a forward propagating direction of light signal, the upstream zone includes polymeric material with the refractive index higher than that of the cladding of the combiner end fiber. This zone is configured to remove the backreflected core guided light bled into the cladding of the combiner through a splice between combiner end and output fibers. The intermediate zone includes polymeric material configured with a refractive index lower than that of the cladding of the combiner output fiber so it can prevent clad guided signal light from decoupling the cladding under the material. The downstream zone is configured with polymeric material having a refractive index lower than that of the cladding of the combiner output fiber. The polymeric material of the downstream zone is impregnated with a plurality of light diffusers scattering high numerical aperture rays of the clad-guided signal light.
Abstract:
The disclosed ultra-high power all fiber laser system is configured with multiple spaced apart fiber lasers outputting respective laser beams respective paths. The disclosed system is further configured with a tapered fiber-bundle including at least, one central guiding fiber and a plurality of peripheral guiding fibers. The disclosed system further has a multiclad delivery fiber configured with a double-bottle neck cross-section and provided with at least two concentric and radially spaced apart inner and outer cores. The inner core is coupled to the peripheral guiding fibers while the inner core is spliced to the central guiding fiber so that a system output emitted from the inner core of the delivery fiber has a different beam shape from the system output emitted from the outer core.
Abstract:
An active waveguide including active and passive rods which have respective polymeric claddings mechanically and optically coupled to one another so as to define a side pumping scheme. One or a plurality of elements are embedded in one of or both active and passive rods and have a refractive index lower than the lowest of refractive indices of the respective active and passive rods at at least 1*10 -3 . The MM core of the active rod includes inner and outer concentric regions with a concentration of light emitters in the outer region being lower than that of the inner region at more than 50 % and, a radius of the inner region being at most 92 % of that of the outer region. The unabsorbed pump light at the output of the active waveguide constitutes less than 1 % of the delivered pump light which in combination with the refractive index of the embedded elements and selectively doped core regions contribute to laser efficiency of at least 86 %.