Abstract:
Etch selectivity enhancement during electron beam activated chemical etch (EBACE), methods and apparatus for evaluating the quality of structures on an integrated circuit wafer using EBACE, a method for modifying a surface of a substrate (or a portion there of), methods and apparatus for imaging a structure and an associated processor-readable medium are disclosed. A target or portion thereof may be exposed to a gas composition of a type that etches the target when the gas composition and/or target are exposed to an electron beam. By directing an electron beam toward the target in the vicinity of the gas composition, an interaction between the electron beam and the gas composition etches a portion of the target exposed to both the gas composition and the electron beam.
Abstract:
The present invention includes a system for localization of defects in test samples. A sample is scanned using a particle beam. Some particles interact with conductive elements and may cause the emission of x-rays. Other particles can pass through the sample entirely and generate a current that can be measured. A higher current generated indicates less conductive material at the scan target that may mean a void, dishing, or erosion is present. Localization of a defect can be confirmed using an x-ray emission detector.
Abstract:
The present invention provides a system for characterizing voids (411) in test samples. An X-ray emission inducer scans a target such as a via on a test sample. A metallization (409) or thin film layer (405) emits X-rays as a result of the scan. The X-ray emission intensity can be measured and compared against a control measurement. The information obtained can be used to characterize a void in the scan target.
Abstract:
Techniques for detecting endpoints during semiconductor dry-etching processes are described. The dry-etching process of the present invention involves using a combination of a reactive material and a charged particle beam, such as an electron beam. In another embodiment, a photon beam is used to facilitate the etching process. The endpoint detection techniques involve monitoring the emission levels of secondary electrons and backscatter electrons together with the current within the sample. Depending upon the weight given to each of these parameters, an endpoint is identified when the values of these parameters change more than a certain percentage, relative to an initial value for these values.
Abstract:
Methods and systems for creating a recipe for a defect review process are provided. One method includes determining an identity of a specimen on which the defect review process will be performed. The method also includes identifying inspection results for the specimen based on the identity. In addition, the method includes creating the recipe for the defect review process based on the inspection results. One system includes a sensor configured to generate output responsive to an identity of a specimen on which the defect review process will be performed. The system also includes a processor configured to determine the identity of the specimen using the output, to identify inspection results for the specimen based on the identity, and to create the recipe for the defect review process based on the inspection results.
Abstract:
The present invention includes a system for efficient and effective detection and characterization of dishing and/or erosion. An x-ray emission inducer is used to scan a target on a sample. The target can be scanned at an acute incident angle to allow characterization of the dishing and/or erosion and analysis of the metallization or thin film layer topology.