Abstract:
The invention relates to a method of manufacturing a discrete or integrated bipolar transistor comprising a base (1A), an emitter (2) and a collector (3). The base (1A) and a connecting region (1B) of the base (1A) are formed by providing a semiconductor body (10) with a doped semiconducting layer (1) which locally borders on a monocrystalline part (3) of the semiconductor body which forms the collector (3). Outside said base, the layer (1) borders on a non-monocrystalline part (4) of the semiconductor body (10) and forms a non-monocrystalline connecting region (1B) of the base (1A). By means of a mask (5), the doping concentration of the layer (1) outside the mask (5) is selectively increased, resulting in a highly conducting connection region (1B) and a very fast transistor. In the known method, an ion implantation is used for this purpose. In a method in accordance with the invention, this is achieved by bringing the semiconductor body (10) into contact with a gaseous substance (40) comprising a doping element, and heating the semiconductor body (10) in such a manner that the doping elements penetrate into the semiconducting layer (1). The supply of the gaseous substance (40), for example diborane, preferably takes place at a temperature between 800 and 950 DEG C for one to several minutes. Subsequently, a slightly longer diffusion step can be carried out, for example, at 850 DEG C.
Abstract:
The invention relates to a semiconductor device having a rectifying junction (5) which is situated between two (semiconductor) regions (1, 2) of an opposite conductivity type. The second region (2), which includes silicon, is thicker and has a smaller doping concentration than the first region (1) which includes a sub-region comprising a mixed crystal of silicon and germanium. The two regions (1, 2) are each provided with a connection conductor (3, 4). Such a device can very suitably be used as a switching element, in particular as a switching element for a high voltage and/or high power. In the known device, the silicon-germanium mixed crystal is relaxed, leading to the formation of misfit dislocations. These serve to reduce the service life of the minority charge carriers, thus enabling the device to be switched very rapidly. In a device in accordance with the invention, the entire first region (1) comprises a mixed crystal of silicon and germanium, and the germanium content and the thickness of the first region (1) are selected so that the voltage built up in the semiconductor device remains below the level at which misfit dislocations develop. Surprisingly, it has been found that such a device can also be switched very rapidly, even more rapidly than the known device. The absence of misfit dislocations has an additional advantage, namely that the device is very reliable. Misfit dislocations do not develop if the product of said relative deviation in the lattice constant and the thickness of the first region is smaller than or equal to 40 nm %. A safe upper limit for said product is 30 nm %.