Abstract:
The invention relates to a semiconductor device comprising a preferably discrete bipolar transistor with a collector region (1), a base region (2), and an emitter region (3) which are provided with connection conductors (6, 7, 8). A known means of preventing a saturation of the transistor is that the latter is provided with a Schottky clamping diode. The latter is formed in that case in that the connection conductor (7) of the base region (2) is also put into contact with the collector region (1). In a device according to the invention, the second connection conductor (7) is exclusively connected to the base region (2), and a partial region (2B) of that portion (2A) of the base region (2) which lies outside the emitter region (3), as seen in projection, lying below the second connection conductor (7) is given a smaller flux of dopant atoms. The bipolar transistor in a device according to the invention is provided with a pn clamping diode which is formed between the partial region (2B) and the collector region (1). Such a device has excellent properties, such as a short switching time (ts) and a saturation collector-emitter voltage (VCEsat) which is not too high, while having a low, non-variable and well reproducible leakage current, unlike the known device. The reduced flux of dopant atoms of the partial region (2B) is preferably realized in that the partial region (2B) is given a smaller doping concentration and/or thickness than the remainder (2A) of the portion of the base region (2) which lies outside the emitter region (3). In a favourable modification, a region (4) provided simultaneously with the emitter region (3) is present between the partial region (2B) and the second connection conductor (7).
Abstract:
The invention relates to a semiconductor device having a rectifying junction (5) which is situated between two (semiconductor) regions (1, 2) of an opposite conductivity type. The second region (2), which includes silicon, is thicker and has a smaller doping concentration than the first region (1) which includes a sub-region comprising a mixed crystal of silicon and germanium. The two regions (1, 2) are each provided with a connection conductor (3, 4). Such a device can very suitably be used as a switching element, in particular as a switching element for a high voltage and/or high power. In the known device, the silicon-germanium mixed crystal is relaxed, leading to the formation of misfit dislocations. These serve to reduce the service life of the minority charge carriers, thus enabling the device to be switched very rapidly. In a device in accordance with the invention, the entire first region (1) comprises a mixed crystal of silicon and germanium, and the germanium content and the thickness of the first region (1) are selected so that the voltage built up in the semiconductor device remains below the level at which misfit dislocations develop. Surprisingly, it has been found that such a device can also be switched very rapidly, even more rapidly than the known device. The absence of misfit dislocations has an additional advantage, namely that the device is very reliable. Misfit dislocations do not develop if the product of said relative deviation in the lattice constant and the thickness of the first region is smaller than or equal to 40 nm %. A safe upper limit for said product is 30 nm %.
Abstract:
In a semiconductor switch device such as an NPN transistor (T) or a power switching diode (D), a multiple-zone first region (1) of one conductivity type forms a switchable p-n junction (12) with a second region (2) of opposite conductivity type. In accordance with the invention, this first region (1) includes three distinct zones, namely a low-doped zone (23), a high-doped zone (25), and an intermediate additional zone (24). The low-doped zone (23) is provided by a semiconductor body portion (11) having a substantially uniform p-type doping concentration (P-) and forms the p-n junction (12) with the second region (2). The distinct additional zone (24) is present between the low-doped zone (23) and the high-doped zone (25). This triple-zone formation for the first region (1) permits an improvement in switching behaviour, e.g. in terms of fall-time and energy dissipation during turn-off of the device (T, D). A very low doping (P-) can be used for low-doped zone (23) so that, in the off-state of the device (T, D), this zone (23) and also the additional zone (24) can be fully depleted. The additional zone (24) having its additional doping concentration provides a path for extracting residual charge carriers from the low-doped zone (23) when the device (T, D) is being switched off.
Abstract:
The invention relates to a so-called punch-through diode comprising a stack of, for example, an n , p , p , n region (1, 2, 3, 4). In the known diode, these regions (1, 2, 3, 4) are arranged on a substrate (11) in said order. The diode is provided with connection conductors (5, 6). Such a diode does not have a steep I-V characteristic and hence is less suitable as a TVSD (= Transient Voltage Suppression Device). Particularly at voltages below 5 volts, a punch-through diode could form an attractive alternative for use as a TVSD. A punch-through diode according to the invention has an inverted structure, which means that the regions (1, 2, 3, 4) are positioned in reverse order on the substrate (11) and thus, the first region (1) adjoins the surface, and the fourth region (4) adjoins the substrate (11). Such a diode has a very steep I-V characteristic, is very suitable as a TVSD and functions very well at an operating voltage below 5 volts. Preferably, the diode is provided with a field plate (6) and, also preferably, the first region (1) comprises a mixed crystal of silicon and germanium.
Abstract:
A semiconductor device, such as a power MOSFET, Schottky rectifier or p-n rectifier, has a voltage-sustaining zone (20) between a first (21, 23, 31a) and second (22) device regions adjacent to respective first and second opposite surfaces (11, 12) of a semiconductor body 10. Trenched field-shaping regions (40) including a resistive path (42) extend through the voltage-sustaining zone (20) to the underlying second region (22), so as to enhance the breakdown voltage of the device. The voltage-sustaining zone (20) and the trenched field-shaping regions (40) are present in both the active device area (A) and in the peripheral area (P) of the device. A further resistive path (53) extends across the first surface (11), outwardly over the peripheral area (P). This further resistive path (53) provides a potential divider that is connected to the respective resistive paths (42) of successive underlying trenched field-shaping regions (40) in the peripheral area (P). Thereby a gradual variation is achieved in the potential (V2) applied by the successive trenched field-shaping regions (40) in the peripheral area (P) of the voltage-sustaining zone (20). This advantageous peripheral termination reduces device susceptibility to deviations in the field profile in this peripheral area (P).
Abstract:
A semiconductor device has first and second opposed major surfaces (10a and 10b). A semiconductor first region (11) is provided between second (12 or 120) and third (14) regions such that the second region (12 or 120) forms a rectifying junction (13 or 130) with the first region (11) and separates the first region (11) from the first major surface (10a) while the third region (14) separates the first region (11) from the second major surface (10b). A plurality of semi-insulating or resistive paths (21) are dispersed within the first region (1') such that each path extends through the first region from the second to the third region. In use of the device when a reverse biasing voltage is applied across the rectifying junction (13 or 130) an electrical potential distribution is generated along the resistive paths (21) which causes a depletion region in the first region (11) to extend through the first region (11) to the third region (14) to increase the reverse breakdown voltage of the device. The device may be, for example a pn-n diode in which case the second region is a semiconductive region of the opposite conductivity type to the first region or a Schottky diode in which case the second region (120) forms a Schottky contact with the first region.
Abstract:
A semiconductor device, such as a MOSFET or PN diode rectifier, has a p-n junction (24) between a first device region (23) and an underlying voltage-sustaining zone (20). Trenched field-shaping regions (40) extend through the voltage-sustaining zone (20) to improve the voltage-blocking and on-resistance characteristics of the device. The trenched field-shaping region (40) comprises a resistive path (42) accommodated in a trench (41) that has an insulating layer (44) at its side-walls. The insulating layer (44) dielectrically couples potential from the resistive path (42) to the voltage-sustaining zone (20) that is depleted in a voltage-blocking mode of operation of the device. The insulating layer (44) extends at the side-walls of the trench (41) to an upper level (81) that is higher than a lower level (82) at which the resistive path (42) starts in the trench (41). This lower level (82) is more closely aligned to the p-n junction (24) and is protected by the insulating layer (44) extending to the higher level (81). This construction enables the electric field distribution in the voltage-sustaining zone (20) to be improved by aligning very closely the start of the potential drop along the resistive path (42) with the p-n junction depth (d).
Abstract:
A semiconductor body (10) has first and second opposed major surfaces (10a and 10b), with a first region (11) of one conductivity type and a plurality of body regions (32) of the opposite conductivity type each forming a pn junction with the first region (11). A plurality of source regions (33) meet the first major surface (10a) and are each associated with a corresponding body region (32) such that a conduction channel accommodating portion (33a) is defined between each source region (33) and the corresponding body region (32). An insulated gate structure (30,31) adjoins each conduction channel area (33a) for controlling formation of a conduction channel in the conduction channel areas to control majority charge carrier flow from the source regions (33) through the first region (11) to a further region (14) adjoining the second major surface (10b). A plurality of field shaping regions (20) are dispersed within the first region (11) and extend from the source regions (32) towards the further region (14) such that, in use, a voltage is applied between the source and further regions (33 and 14) and the device is non-conducting, the field shaping regions (20) provide a path for charge carriers from the source regions at least partially through the first region and cause a depletion region in the first region (11) to extend through the first region (11) towards the further region (14) to increase the reverse breakdown voltage of the device.
Abstract:
In a trench-gate semiconductor device, for example a cellular power MOSFET, the gate (11) is present in a trench (20) that extends through the channel-accommodating region (15) of the device. An underlying body portion (16) that carries a high voltage in an off state of the device is present adjacent to a side wall of a lower part (20b) of the trench (20). Instead of being a single high-resistivity region, this body portion (16) comprises first regions (61) of a first conductivity type interposed with second regions (62) of the opposite second conductivity type. In the conducting state of the device, the first regions (61) provide parallel current paths through the thick body portion (16), from the conduction channel (12) in the channel-accommodating region (15). In an off-state of the device, the body portion (16) carries a depletion layer (50). The first region (61) of this body portion (16) is present between the second region (62) and the side wall (22) of the lower part (20b) of the trench (20) and has a doping concentration (Nd) of the first conductivity type that is higher than the doping concentration (Na) of the second conductivity type of the second region (62). A balanced space charge is nonetheless obtained by depletion of the first and second regions (61, 62), because the width (W1) of the first region (61) is made smaller than the width (W2) of the lower-doped second region (62). This device structure can have a low on-resistance and high breakdown voltage, while also permitting its commercial manufacture using dopant out-diffusion from the lower trench part (20b) into the lower-doped second region (62) to form the first region (61).
Abstract:
A semiconductor body (1) is provided having a first semiconductor region (3) of one conductivity type separated from a first major surface (5a) by a second semiconductor region (5) of the opposite conductivity type. A trench (7) is etched through the second semiconductor region (5) to an etch stop layer (4) provided in the region of the pn junction between the first (3) and second (5) regions, by using an etching process which enables the etching process to be stopped at the etch stop layer. A gate (8, 9) is provided within the trench (7). A source (12) separated from the first region (3) by the second region (5) is formed adjacent the trench so that a conduction channel area (50) of the second region (5) adjacent the trench provides a conduction path between the source and first regions which is controllable by the gate.