Abstract:
Methods and apparatuses for forming high modulus silicon oxide spacers using atomic layer deposition are provided. Methods involve depositing at high temperature, using high plasma energy, and post-treating deposited silicon oxide using ultraviolet radiation. Such silicon oxide spacers are suitable for use as masks in multiple patterning applications to prevent pitch walking.
Abstract:
Dielectric composite films characterized by a dielectric constant (k) of less than about 7 and having a density of at least about 2.5 g/cm 3 are deposited on partially fabricated semiconductor devices to serve as etch stop layers. The composite films in one embodiment include at least two elements selected from the group consisting of Al, Si, and Ge, and at least one element selected from the group consisting of O, N, and C. In one embodiment the composite film includes Al, Si and O. In one implementation, a substrate containing an exposed dielectric layer (e.g., a ULK dielectric) and an exposed metal layer is contacted with an aluminum-containing compound (such as trimethylaluminum) and, sequentially, with a silicon-containing compound. Adsorbed compounds are then treated with an oxygen-containing plasma (e.g., plasma formed in a CO 2 -containig gas) to form a film that contains Al, Si, and O.