Abstract:
A method and apparatus for equalized plasma coupling is provided herein. Discontinuity marks, also known as golf tee mura, are eliminated or minimized by biasing or grounding lift pins disposed in openings towards the center of a substrate support. To prevent shorting between a biased or grounded lift pin and the substrate support, lift pins are electrically isolated from the substrate support. The electrical isolation of the lift pin includes coating the lift pins with an electrically insulating material or lining a respective substrate support opening with an electrically insulating material.
Abstract:
Methods and apparatuses for forming high modulus silicon oxide spacers using atomic layer deposition are provided. Methods involve depositing at high temperature, using high plasma energy, and post-treating deposited silicon oxide using ultraviolet radiation. Such silicon oxide spacers are suitable for use as masks in multiple patterning applications to prevent pitch walking.
Abstract:
Efficient integrated sequential deposition of alternating layers of dielectric and conductor, for example oxide/metal or metal nitride, e.g., SiO 2 /TiN, in a single tool, and even in a single process chamber enhances throughput without compromising quality when directly depositing a OMOM stack with many layers. Conductor and dielectric film deposition of a stack of at least 20 conductor/dielectric film pairs in the same processing tool or chamber, without breaking vacuum between the film depositions, such that there is no substantial cross-contamination between the conductor and dielectric film depositions, can be achieved.
Abstract:
The field-effect mobility and reliability of a transistor including an oxide semiconductor film are improved. Provided is a semiconductor device including an oxide semiconductor film. The semiconductor device includes a first insulating film, an oxide semiconductor film over the first insulating film, a second insulating film and a third insulating film over the oxide semiconductor film, and a gate electrode over the second insulating film. The second insulating film comprises a silicon oxynitride film. When excess oxygen is added to the second insulating film by oxygen plasma treatment, oxygen can be efficiently supplied to the oxide semiconductor film.
Abstract:
A method may include generating a plasma in a plasma chamber and directing the ions comprising at least one of a condensing species and inert gas species from the plasma to a cavity within a substrate at a non-zero angle of incidence with respect to a perpendicular to a plane of the substrate. The method may further include; depositing a fill material within the cavity using the condensing species, the depositing taking place concurrently with the directing the ions, wherein the fill material accumulates on a lower surface of the cavity at a first rate, and wherein the fill material accumulates on an upper portion of a sidewall of the cavity at a second rate less than the first rate.
Abstract:
Halidosilane compounds, processes for synthesizing halidosilane compounds, compositions comprising halidosilane precursors, and processes for depositing silicon- containing films (e.g., silicon, amorphous silicon, silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, silicon carbonitride, doped silicon films, and metal-doped silicon nitride films) using halidosilane precursors. Examples of halidosilane precursor compounds described herein, include, but are not limited to, monochlorodisilane (MCDS), monobromodisilane (MBDS), monoiododisilane (MIDS), monochlorotrisilane (MCTS), and monobromotrisilane (MBTS), monoiodotrisilane (MITS). Also described herein are methods for depositing silicon containing films such as, without limitation, silicon, amorphous silicon, silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, silicon carbonitride, doped silicon films, and metal-doped silicon nitride films, at one or more deposition temperatures of about 500°C or less.
Abstract:
The present invention provides an electronic or electrical device or component thereof comprising a cross-linked polymeric coating on a surface of the electronic or electrical device or component thereof; wherein the cross-linked polymeric coating is obtainable by exposing the electronic or electrical device or component thereof to a plasma comprising a monomer compound and a crosslinking reagent for a period of time sufficient to allow formation of the cross-linked polymeric coating on a surface thereof, wherein the monomer compound has the following formula: where R 1 , R 2 and R 4 are each independently selected from hydrogen, optionally substituted branched or straight chain C 1 -C 6 alkyl or halo alkyl or aryl optionally substituted by halo, and R 3 is selected from: or where each X is independently selected from hydrogen, a halogen, optionally substituted branched or straight chain C 1 -C 6 alkyl, halo alkyl or aryl optionally substituted by halo; and n 1 is an integer from to 27; and wherein the crosslinking reagent comprises two or more unsaturated bonds attached by means of one or more linker moieties and has a boiling point at standard pressure of less than 500°C.
Abstract:
Methods for the formation of SiCN, SiCO and SiCON films comprising cyclical exposure of a substrate surface to a silicon-containing gas, a carbon-containing gas and a plasma. Some embodiments further comprise the addition of an oxidizing agent prior to at least the plasma exposure.
Abstract:
A method of forming a patterned hard mask on a surface of a substrate uses an accelerated neutral beam with carbon atoms. The objects set forth above as well as further and other objects and advantages of the present invention are achieved by the various embodiment's of the invention described herein below.