Abstract:
In some embodiments, an apparatus and a system, as well as a method and an article, may operate to receive parameters for a first node of a network, the network including a plurality of segments through which an object is to be routed and a plurality of nodes, including the first node, representative of intersections of two or more segments of the plurality of segments; to generate segment lengths for segments between the first node and neighboring nodes to identify a nearest neighboring node with a shortest segment length relative to the first node; and to repeat operations of receiving parameters, generating segment lengths, and identifying nearest neighboring nodes until a route has been identified between a first endpoint and a second endpoint of the network. Additional apparatus, systems, and methods are disclosed.
Abstract:
Systems and methods for optimizing oil recovery and reducing water production in smart wells using integrated reactive/proactive optimization to determine optimal downhole valve settings.
Abstract:
A method for hybrid assisted history matching, including: a) performing history matching by calculating a mismatch for multiple realizations of a geomodel representing a reservoir; b) selecting a production well from a group of production wells m the reservoir; c) generating one or more sample realizations for the geomodel by sampling one or more grid-cell physical properties along one or more streamline trajectories from one or more of the multiple realizations of the geomodel that meet a predetermined rank criteria, the one or more streamline trajectories connecting the selected production well with at least one of an injection well, an aquifer and a gas cap; d) updating one or more of the multiple realizations for the selected production well using the one or more sample realizations and a computer system; and e) repeating steps a)-d) for each production well in the group of production wells.
Abstract:
Systems and methods for monitoring, diagnosing and optimizing operation of a gas lift (GL) system, at least some of which include a method that includes collecting measured data representative of the GL system's state, storing the measured data, comparing the measured data to a well model's calculated data for the well and identifying likely conditions of the GL system based on mismatches between the measured data and the calculated data. The method further includes updating the model to reflect the likely conditions and selected corrections of the likely conditions, generating GL system performance curves using the updated model and presenting to a user actions recommended to achieve a GL system performance consistent with a GL system operating point on at least one of the GL system performance curves.
Abstract:
Systems and methods for estimating well production performance in fractured reservoir systems using real-time down-hole temperature and stress information from advanced monitoring techniques.
Abstract:
A system for Water-Alternating-Gas (WAG) injection for Enhanced Oil Recovery (EOR) includes a mechanical well configured to enable multi-point selective injection for water and gas. The system further includes an optimization engine configured to calculate reservoir flow dynamics and selectively inject water and gas via the mechanical well according to reservoir flow dynamics.
Abstract:
The present disclosure describes systems and methods for monitoring, diagnosing and optimizing operation of an electric submersible pump (ESP). At least some illustrative embodiments include a method that includes collecting measured data representative of a state of an ESP within a well or of well conditions and storing the measured data, matching a nodal analysis model of the well to the well by matching one or more modeled values to corresponding measured data, and identifying one or more likely conditions of the ESP based at least in part on data generated by a matched model. The method further includes updating the matched model to reflect a selected correction of one of the likely conditions identified, generating ESP performance curves using the updated model, and presenting to a user an action recommended to achieve an ESP performance consistent with an ESP operating point selected from one of the ESP performance curves.
Abstract:
The present disclosure describes systems and methods for performing stratigraphic modeling using production data density profiles. At least some illustrative embodiments include a production logging tool data processing method that includes measuring one or more characteristics of a formation within a borehole, of fluids within the formation or of fluids within the borehole, calculating a density profile of each of the one or more characteristics, and defining a boundary between two reservoir simulation cells based at least in part upon the density profile. The method further includes performing a simulation of a production field including the borehole using said simulation cells and presenting the simulation results to a user.
Abstract:
The present disclosure describes systems and methods for performing multi-level reservoir history matching. At least some illustrative embodiments include a method that includes generating a first history-matched model using at least one updated model parameter derived from one or more existing model parameters, generating a set of second history-matched models by applying a probabilistic inversion to the first history-matched model, and deriving a set of third history-matched models from the set of second history-matched models. The method further includes generating dynamic simulation realization sets using each of the set of third history-matched models, ranking each of the set of third history-matched models based at least in part on the dynamic simulation realization sets, and presenting a production forecast to a user based on the highest ranked third history- matched models.
Abstract:
The present disclosure describes systems and methods for monitoring and diagnosing reservoirs. At least some illustrative embodiments include a method that includes collecting measured near-wellbore data representative of conditions at or near wells within the reservoir (e.g., oil and gas wells), storing the measured near-wellbore data in one or more databases and graphically presenting to a user simulated interwell data generated by a reservoir simulation based at least in part on the measured near-wellbore data. The method further includes graphically overlaying at least some of the measured near-wellbore data over the simulated interwell data and graphically presenting to the user one or more production indicators calculated based at least in part on the simulated interwell data.