Abstract:
Devices utilize elements carried by a fluid (4506) in a microchannel (4504) to switch, attenuate, shutter, filter, or phase shift optical signals. In certain embodiments, a microchannel carries a gaseous or liquid slug that interacts with at least a portion of the optical power of an optical signal traveling through a waveguide (4510, 4512). The microchannel may form part of the cladding of the waveguide, part of the core and the cladding, or part of the core only. The microchannel may also have ends or may be configured as a loop or continuous channel. The fluid devices may be self-latching or may be semi-latching. The fluid in the microchannel is moved using e.g., electrocapillarity, differential-pressure electrocapillarity, electrowetting, continuous electrowetting, electrophoresis, electroosmosis, dielectrophoresis, electrohydrodynamic electrohydrodynamic pumping, thermocapillary, thermal expansion, dielectric pumping, and/or variable dielectric pumping.
Abstract:
Optical circuits are disclosed having mechanical beam steering. The mechanical beam steering can mitigate thermal sensitivity of optical circuits, for example, arrayed waveguides. Also disclosed are methods for fabricating optical integrated circuits employing mechanical beam steering.
Abstract:
ABSTRACT An optical device containing a four-port optical mixer capable of distributing the optical power presented at either or both of two input ports to specified ratios in two output ports.
Abstract:
Optical devices and methods for attenuating, shuttering, or switching optical signals as found in telecommunications. A platform carrying a portion of a waveguide and residing in a plane of a substrate is tipped, tilted, twisted, or otherwise moved out of the plane of the substrate to divert the path of an optical signal or to change coupling between adjacent waveguides. The platform can be formed by etching a substrate while leaving one or more connection points between the platform and the substrate to hold the platform to the substrate.