Abstract:
The invention is directed to a system and method for detecting defects in a manufactured object. These defects may include flaws, delaminations, voids, fractures, fissures, or cracks, among others. The system utilizes an ultrasound measurement system, a signal analyzer and an expected result. The signal analyzer compares the signal from the measurement system to the expected result. The analysis may detect a defect or measure an attribute of the manufactured object. Further, the analysis may be displayed or represented. In addition, the expected result may be generated from a model such as a wave propagation model. One embodiment of the invention is a laser ultrasound detection system in which a laser is used to generate an ultrasonic signal. The signal analyzer compares the measured ultrasonic signal to an expected result. This expected result is generated from a wave propagation model. The analysis is then displayed on a monitor.
Abstract:
The invention is directed to a system and method for implementing process control for paint thickness using sonic NDE techniques. The system may, for example, generate ultrasound waves in a test object during the manufacturing process. A detector such as an interferometer may be used to detect the ultrasound waves. An interpreter or analyzer may determine the thickness and or presence of a defect from the waves. Further, the interpreter may associate the thickness measurement and/or defect with a location about an object. Then, a control system may determine and implement an appropriate control action on the process. The control action may also be associated with the location about the object.
Abstract:
A laser light amplification system that amplifies a laser beam emitted from a source as low-amplification seed laser light signal. The low-amplification seed laser light signal is amplified by stimulating emissions of the population inversion provided by a pumping diode to generate an amplified laser light signal. Amplified laser light signal is directed to an object undergoing laser ultrasound testing. Amplified laser light is scattered by the sound energy wave about the object. Scattered laser light is collected by an interferometer and used to detect and characterize acoustic energy. The present invention provides higher pulse rates, improved pointing stability, and optionally variable pulse rates for a variety of uses, including for non-destructive laser ultrasonic testing of materials.
Abstract:
The invention is directed to a system and method for implementing process control for tubing thickness using sonic NDE techniques. The system may, for example, generate ultrasound waves in a test object during the manufacturing process. A detector such as an interferometer may be used to detect the ultrasound waves. An interpreter or analyzer may determine the tubing or sheet thickness from the waves. Then, a control system may determine and implement an appropriate control action on the process.
Abstract:
An interferometer includes a cavity including a pair of mirrors defining a cavity length. An input beam and a counter-propagating reference beam are directed into the cavity. The interferometer generates a feedback control signal and an ultrasound signal for optimal performance and measurement of a target, respectively.
Abstract:
A laser ultrasonic measurement system includes a first and a second laser source configured to generate a first and a second laser beam, respectively. A movable mechanical link is arranged to transmit the first laser beam. The movable mechanical link is formed by a plurality of rigid sections interconnected by rotating joints. A robot is configured to support and control the movement of at least a section of the mechanical link to transmit the first laser beam to an object. An optical scanner is positioned proximate to the mechanical link. The optical scanner is configured to direct the first and second laser beams onto the object. An interferometer is optically coupled to the optical scanner. The interferometer is configured to receive reflected light from the object and in response generate an electrical signal. The first laser source is kinematically mounted in a housing assembly.