Abstract:
An electroless nickel plating bath comprising: i) a source of nickel ions; ii) an effective amount of thiourea; iii) an effective amount of saccharin; iv) a source of hypophosphite ions; v) one or more chelating agents; and vi) optionally, other additives and a method of using the same to provide a high phosphorus electroless nickel plating deposit on a substrate. The high phosphorus electroless nickel deposit is capable of passing an RCA nitric acid test, whereby the substrate with the high phosphorus nickel deposit thereon is immersed into concentrated nickel acid for 30 seconds and a deposit that does not turn black or grey is deemed to have passed the RCA nitric acid test.
Abstract:
A method of plating a part comprised of aluminum, alloys of aluminum, magnesium or alloys of magnesium to improve the corrosion resistance of the part. The method comprises the steps of plating the part with a plating bath comprising: (i) particles selected from the group consisting of polytetrafluoroethylene (PTFE), colloidal silica, colloidal graphite, ceramics, carbon nanotubes, silicon carbide, nano-diamond, diamond and combinations of one or more of the foregoing, which have been treated with a corrosion inhibitor and are dispersed in said plating bath; and (ii) metal ions to be plated, The dispersed particles co-deposit with the plated metal.
Abstract:
An electroless nickel plating solution and a method of using the same is described. The electroless nickel plating solution comprises (i) a source of nickel ions; (ii) a reducing agent; (iii) one or more complexing agents; (iv) one or more bath stabilizers; (v) a brightener, said brightener comprising a sulfonated compound having sulfonic acid or sulfonate groups; and (vi) optionally, one or more additional additives. The use of the sulfonated compound brightener results in a bright electroless nickel deposit on various substrates having a high gloss value.
Abstract:
A method of producing a composite electroless nickel layer on a substrate is described. The method includes the steps of contacting the substrate with a composite electroless nickel plating bath and generating an electrostatic field in the electroless nickel plating bath. The electric field is generated by placing an anode in the electroless nickel plating bath and connecting the anode to a positive terminal of a DC rectifier, and connecting the substrate to a negative temiinal of the DC rectifier, and preferably inserting a capacitor into the circuit to prevent passage of current. An attractive force generated by the electrostatic field increases the attraction of the positively charged PTFE particles to the negatively charged substrate and drives the positively charged PTFE particles to the negatively charged substrate.
Abstract:
An electroless nickel plating solution and a method of using the same to produce a nickel deposit having a phosphorus content that remains at about 12% throughout the lifetime of the electroless nickel plating solution is disclosed. The electroless nickel plating solution comprises (a) a source of nickel ions; (b) a reducing agent comprising a hypophosphite; and (c) a chelation system comprising: (i) one or more dicarboxylic acids; and (ii) one or more alpha hydroxy carboxylic acids. The electroless nickel plating solution may also comprise stabilizers and brighteners.