Abstract:
Surface conduction in porous media can drastically alter the stability and morphology of electrodeposition at high rates, above the diffusion-limited current. Above the limiting current, surface conduction inhibits growth in the positive membrane and produces irregular dendrites, while it enhances growth and suppresses dendrites behind a deionization shock in the negative membrane. The discovery of uniform growth contradicts quasi-steady "leaky membrane" models, which are in the same universality class as unstable Laplacian growth, and indicates the importance of transient electro-diffusion or electro-osmotic dispersion. Shock electrodeposition could be exploited for high-rate recharging of metal batteries or manufacturing of metal matrix composite coatings.