Abstract:
A method of providing automatic reading tutoring is disclosed. The method includes retrieving a textual indication of a story from a data store and creating a language model including constructing a target context free grammar indicative of a first portion of the story. A first acoustic input is received and a speech recognition engine is employed to recognize the first acoustic input. An output of the speech recognition engine is compared to the language model and a signal indicative of whether the output of the speech recognition matches at least a portion of the target context free grammar is provided.
Abstract:
Training data may be provided, the training data including pairs of source phrases and target phrases. The pairs may be used to train an intra-language statistical machine translation model, where the intra-language statistical machine translation model, when given an input phrase of text in the human language, can compute probabilities of semantic equivalence of the input phrase to possible translations of the input phrase in the human language. The statistical machine translation model may be used to translate between queries and listings. The queries may be text strings in the human language submitted to a search engine. The listing strings may be text strings of formal names of real world entities that are to be searched by the search engine to find matches for the query strings.
Abstract:
A novel system for automatic reading tutoring provides effective error detection and reduced false alarms combined with low processing time burdens and response times short enough to maintain a natural, engaging flow of interaction. According to one illustrative embodiment, an automatic reading tutoring method includes displaying a text output and receiving an acoustic input. The acoustic input is modeled with a domain-specific target language model specific to the text output, and with a general-domain garbage language model, both of which may be efficiently constructed as context-free grammars. The domain-specific target language model may be built dynamically or "on-the-fly" based on the currently displayed text (eg the story to be read by the user), while the general-domain garbage language model is shared among all different text outputs. User-perceptible tutoring feedback is provided based on the target language model and the garbage language model.