Abstract:
A computer-implemented technique is described herein for detecting actionable items in speech. In one manner of operation, the technique entails: receiving utterance information that expresses at least one utterance made by one participant of a conversation to at least one other participant of the conversation; converting the utterance information into recognized speech information; using a machine-trained model to recognize at least one actionable item associated with the recognized speech information; and performing at least one computer-implemented action associated the actionable item(s).The machine-trained model may correspond to a deep-structured convolutional neural network. In some implementations, the technique produces the machine-trained model using a source environment corpus that is not optimally suited for a target environment in which the model is intended to be applied. The technique further provides various adaptation techniques for adapting a source-environment model so that it better suits the target environment.
Abstract:
A deep learning network is trained to automatically analyze enterprise data. Raw data from one or more global data sources is received, and a specific training dataset that includes data exemplary of the enterprise data is also received. The raw data from the global data sources is used to pre-train the deep learning network to predict the results of a specific enterprise outcome scenario. The specific training dataset is then used to further train the deep learning network to predict the results of a specific enterprise outcome scenario. Alternately, the raw data from the global data sources may be automatically mined to identify semantic relationships there-within, and the identified semantic relationships may be used to pre-train the deep learning network to predict the results of a specific enterprise outcome scenario.
Abstract:
A processing unit can acquire datasets from respective data sources, each having a respective unique data domain. The processing unit can determine values of a plurality of features based on the plurality of datasets. The processing unit can modify input-specific parameters or history parameters of a computational model based on the values of the features. In some examples, the processing unit can determine an estimated value of a target feature based at least in part on the modified computational model and values of one or more reference features. In some examples, the computational model can include neural networks for several input sets. An output layer of at least one of the neural networks can be connected to the respective hidden layer(s) of one or more other(s) of the neural networks. In some examples, the neural networks can be operated to provide transformed feature value(s) for respective times.
Abstract:
A search engine is described herein for providing search results based on a context in which a query has been submitted, as expressed by context information. The search engine operates by ranking a plurality of documents based on a consideration of the query, and based, in part, on a context concept vector and a plurality of document concept vectors, both generated using a deep learning model (such as a deep neural network). The context concept vector is formed by a projection of the context information into a semantic space using the deep learning model. Each document concept vector is formed by a projection of document information, associated with a particular document, into the same semantic space using the deep learning model. The ranking operates by favoring documents that are relevant to the context within the semantic space, and disfavoring documents that are not relevant to the context.
Abstract:
Techniques for providing a people recommendation system for predicting and recommending relevant people (or other entities) to include in a conversation based on contextual indicators. In an exemplary embodiment, email recipient recommendations may be suggested based on contextual signals, e.g., project names, body text, existing recipients, current date and time, etc. In an aspect, a plurality of properties including ranked key phrases are associated with profiles corresponding to personal entities. Aggregated profiles are analyzed using first- and second-layer processing techniques. The recommendations may be provided to the user reactively, e.g., in response to a specific query by the user to the people recommendation system, or proactively, e.g., based on the context of what the user is currently working on, in the absence of a specific query by the user.
Abstract:
An "Interestingness Modeler" uses deep neural networks to learn deep semantic models (DSM) of "interestingness." The DSM, consisting of two branches of deep neural networks or their convolutional versions, identifies and predicts target documents that would interest users reading source documents. The learned model observes, identifies, and detects naturally occurring signals of interestingness in click transitions between source and target documents derived from web browser logs. Interestingness is modeled with deep neural networks that map source-target document pairs to feature vectors in a latent space, trained on document transitions in view of a "context" and optional "focus" of source and target documents. Network parameters are learned to minimize distances between source documents and their corresponding "interesting" targets in that space. The resulting interestingness model has applicable uses, including, but not limited to, contextual entity searches, automatic text highlighting, prefetching documents of likely interest, automated content recommendation, automated advertisement placement, etc.