Abstract:
Very low loading of impact modifier less than 4% can significantly improve elongation and impact strength of N6/clay nanocomposites and keep the high tensile strength and modulus. This rubber modified nylon nanocomposites have potential applications in fabricating high-strength fibers for textile industry, coatings for strings or polymer parts, and packaging industry.
Abstract:
A thin buffer layer (303) is used to coat on the multi-filament (401) wrapped string to fill the gaps. The polymers of the buffer-layer coating have a high melt-flow (low viscosity) during coating process to fill all the gaps between the filaments, and the filaments are fixed by the coatings onto base core materials.
Abstract:
Improved mechanical properties of both clay and carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by pre-treating nanoparticles and polymer pellets prior to a melt compounding process. The nanoparticles are coated onto the surface of the polymer pellets by a ball-milling process. The nanoparticles thin film is formed onto the surface of the polymer pellets after the mixture is ground for a certain time.
Abstract:
A phosphor for use in displays is a mixture of phosphors and carbon nanotubes. The phosphor screen has improved electrical and thermal conductivity.
Abstract:
Carbon nanotubes, which may or may not be mixed with particles, organic materials, non-organic materials, or solvents, are deposited on a substrate to form a cold cathode. The deposition of the carbon nanotube mixture may be performed using an ink jet printing process or a screen printing process.
Abstract:
A combination of MWNTs (herein, MWNTs have more than 2 walls) and DWNTs significantly improves the mechanical properties of polymer nanocomposites. A small amount of DWNTs reinforcment (
Abstract:
Field emission properties may also be improved by coating the carbon materials with metal oxides. These metal oxides contribute to lowering the work function of the carbon material as well as improve the life of the field emission properties of the carbon materials, especially under high current density operation.
Abstract:
Carbon nanotubes can be self-aligned by making composites of carbon nanotube powders with particles and organic and/or inorganic carriers such as water or other solvents. After the mixture is applied onto a substrate by whatever ways, such as brushing, screen-printing, ink-jet printing, spraying, dispersing, spin-coating, dipping, and the like and combinations, a fragmentation process occurs when the composite material is dried or cured by certain ways to eliminate some or all of the carrier material. This results in microcracks forming between the fragments. CNT fibers that are bonded or set in the fragments on either side of a crack are aligned in the crack area, either by stretching the fibers or by allowing the fibers to spool out from one or both fragments.
Abstract:
A method for forming cathodes for use in field emission devices using nanoparticules, such as carbon nanotubes (CNTs), is disclosed. The CNT layer comprises the electron emitting material on the surface of the cathode. Using the methods of the present invention, the density of the deposited CNTs may be modulated by forming emitter islands on the surface of the cathode. The size and distribution of the CNT emitter islands serve to optimize the field emission of the resulting CNT layer. In one embodiment, the CNT emitter islands are formed using a screen-printing deposition method. The present invention may be practiced without further process steps after deposition which activate or align active or align the carbon nanotubes for field emission.
Abstract:
An industrial scale method for patterning nanoparticle emitters for use as cathodes in a display device is disclosed. The low temperature method can be practiced in high volume applications, with good uniformity of the resulting display device. The method steps involve deposition of CNT emitter material over an entire surface of a prefabricated composite structure, and subsequent removal of the CNT emitter material from unwanted portions of the surface using physical methods.