Abstract:
A system kit and a method for creating a thermal imaging camera by connecting an infrared radiation capturing device to an external platform are provided herein. The kit may include a front end module which may include an image capturing device comprising a micro bolometer detector; and a universal serial bus (USB) interface connected to the image capturing device. The kit may further include a backend module, comprising data sets which are specific to said micro bolometer detector and computer readable code which is executable by a computer processor located at a physical location other than the front end module, wherein said front end module is configured to obtain raw data from the micro bolometer detector and deliver it over the USB interface to said backend module, wherein said backend module code turns the raw data into thermal imagery and temperature readings.
Abstract:
Enhancing infrared measurement accuracy and thereby allowing remote diagnostics of various states that are characterized by minute temperature difference, beyond the capabilities of current infrared imaging systems is provided herein. Embodiments of the invention utilize the exact fusing of a visible light image and an infrared image, achieved by setting the system at a known spatial relationship in which they are both focused at the intersection of their optical axes, and identifying a well contrasting infrared region within a focused visible light image, to visually identify an uninfluenced target region that serves as a reference region for infrared temperature difference measurements. Using this reference allows enhancing the resolution of the infrared imaging by an order of magnitude.
Abstract:
Gas leakage monitoring systems and methods are provided, which use infrared camera(s) configured to capture images and to detect gas leakage at specified detection locations (SDLs) captured thereby, sniffer(s) configured to quantify the gas leakage at specified measurement points, and processing unit(s) in communication with the sniffer(s) and the camera(s), which are configured to associate and display sniffer point measurements within captured image(s) or video of the corresponding SDLs. The systems and methods generate a documentation of gas leakage measurements in association with images of the sniffers' positions during the measurements, e.g., measurement data being displayed on the image(s) of the sniffer(s) and provide additional combined analysis of images and measurements.
Abstract:
System and method of quantifying a gas leak in a specified field of view are disclosed. The system may comprise a cooled detector and two interchangeable band-pass non-cooled filters. A first non-cooled band-pass filter transmits electromagnetic radiation in a first spectral band that coincides with a non-transparent leaking gas spectral band. A second non-cooled band-pass filter transmits only electromagnetic radiation in a second spectral band which coincides with a transparent leaking gas spectral band. The system may comprise a quantification unit arranged to process the images generated by the cooled detector to thereby determine, based on the images thereof, a flowrate of the leaking gas in the specified field of view. The system may comprise a detection unit arranged to determine, based on alternately generated multiple first spectral band images and multiple second spectral band images, a gas leak in the specified field of view.
Abstract:
Optical systems and respective cameras are provided, which have a NUC (non-uniformity correction) -shutter incorporated internally in the optical system, between its optical elements. The NUC-shutter is configured to be temporarily inserted between two of the optical elements to enable performing NUC of a detector array in the camera. Camera designs, in particular infrared camera designs, achieve wide fields of view and very low distortions by exploiting the possibility to minimize the back focal length of the optical system which is enabled by the configuration of the NUC-shutter.
Abstract:
Imaging systems and methods are provided, which use visual range and infrared thermal camera(s), set at fixed spatial relations and focused at an intersection of their optical axes, to focus the infrared camera(s). The cameras are moved together, and the object is positioned at the focus of all cameras upon identifying an overlapping of the visual range images. An image processor fuses images and derives infrared measurements of different regions in object. Prior knowledge concerning the temperature distribution in different regions of the object is utilized to enhance infrared measurement accuracy.
Abstract:
A method of optimizing detection of known light sources is provided herein. The method may include: positioning a plurality of cameras having different spectral bands to have at least partially identical fields of view in respect to a view that contains the light sources; capturing images of the light sources by the cameras at different spectral bands; estimating, for each pixel and all cameras, relative fraction values of collected sun light and of collected light sources; deriving, for each pixel, optimal fraction values of sun light and of the light sources, by minimizing, for each pixel, a mean square error estimation of an overall radiation with respect to the estimated relative fraction values.
Abstract:
Imaging system and method for detecting the presence of a substance that has a detectable signature in a known spectral band. The system comprises a thermal imaging sensor and optics, and two interchangeable band-pass uncooled filters located between the optics and the detector. A first filter transmits electromagnetic radiation in a first spectral band that includes the known spectral band and blocks electromagnetic radiation for other spectral bands. A second filter transmits only electromagnetic radiation in a second spectral band in which the substance has no detectable signature. The system also includes a processor for processing the images to obtain a reconstructed fused image involving using one or more transforms aimed at obtaining similarity between one or more images acquired with the first filter and one or more images acquired with the second filter before reconstructing the fused image.
Abstract:
An infrared optical system having a spectral range for achieving a fog penetration distance of at least 2.75 Runway Visibility Range (RVR) is provided herein. The optical system may include a single set of optical elements designed to have a wavelength range extending beyond 1.2 µm toward shorter wavelengths and comprising a short-wavelength infrared (SWIR) range and at least one of: a middle-wavelength infrared (MWIR) range and a long-wavelength infrared (LWIR) range, to enhance a detection range of the infrared optical system, wherein the single set of optical elements is laid such that the both the SWIR range and the at least one of the MWIR range and the LWIR range of infrared radiation pass through all of the optical elements.
Abstract:
Device for retrieving electrical charge, resulting from electromagnetic radiation energy incident on a temperature sensor array, the temperature sensor array including a plurality of temperature sensor rows, each temperature sensor row including a plurality of temperature sensors, the device including a retrieval module array and a row select circuit, the retrieval module array including a plurality of retrieval module rows, each retrieval module row including a plurality of retrieval modules, each of the retrieval modules being operative to accumulate the electrical charge from a single temperature sensor, the row select circuit being coupled with the temperature sensor array, and with the retrieval module array, the row select circuit being operative for coupling the retrieval modules of each of the retrieval module row of the retrieval module array with a respective temperature sensor of a temperature sensor row of the temperature sensor array, for a time period which is greater than the frame acquisition period divided by the number of the temperature sensor rows.