Abstract:
A flight data pod includes an aerodynamically efficient main body having a mounting bracket for securing the pod onto the wings, fuselage or strut of an aircraft during flight. A sensor suite is positioned within the main body to independently capture flight data information pertaining to the flight characteristics, statistics, metrics, performance and environment of the aircraft during flight. A control unit is positioned within the main body to selectively control an operation of the sensor suite, store the flight data information within a memory and communicate with a user device. A mobile application displays the flight data information and communicates operating instructions to the pod, and a power generation unit generates power for use by the system components during flight.
Abstract:
Aéronef comprenant un fuselage (1) divisé par un plancher (2) en un o volume supérieur (3) et un volume inférieur (4) dans lequel s'étendent des poutrelles (5) supportant le plancher et délimitant avec le fuselage et le plancher deux logements latéraux (6) qui ont une section transversale sensiblement triangulaire et qui s'étendent parallèlement à une direction longitudinale du fuselage. Des unités de calcul (100) sont disposées dans les logements latéraux et comprennent chacune un boîtier (101) définissant un compartiment principal contenant des modules de calcul (122) insérables dans le compartiment principal selon une direction df insertion par une ouverture de celui- ci et raccordables à des connecteurs (115) portés par une paroi de fond (116) du compartiment pour déboucher dans le compartiment principal à l' opposé de l' ouverture, la direction d' insertion étant sensiblement parallèle à la direction longitudinale du fuselage.
Abstract:
The invention relates to a display for 3D aircraft visualisation and flight path features. The display system is for use on the flight deck of an aircraft and comprises a display operable for graphical display of data, and a processor operatively coupled to the display and configured to receive terrain data from at least a terrain data base, flight plan data from a source of navigational data, and aircraft position data from one or more aircraft sensors. The processor is configured to operate the display to display a representation of the flight plan on the display screen, display a representation of the terrain proximate the flight plan representation, and display a representation of the aircraft relative to the flight plan and the terrain.
Abstract:
The present disclosure describes displaying on a flight deck (12) graphical presentations indicative of performance limitations of an aircraft (10) resulting from an in-flight aircraft reconfiguration. The graphical presentations are co-located on the flight deck (12) with the graphical presentations of the aircraft (10) and/or system (34) parameters to which the performance limitations apply.
Abstract:
An aircraft navigation system and a method for aircraft navigation is presented. The aircraft navigation system comprising: a navigation-map data source (101), navigation-map data provided by the navigation-map data source (101) including information about a multitude of objects O on earth surface which are of high potential visibility and high potential identiftability from elevated positions, each information for an object O € O including a position and a type of the respective object O; a first system (102) for measuring an actual aircraft position P(t); a waypoint data source (103) providing waypoints WP i , defining an aircraft intended flight track; a second system (104) for selecting per waypoint WP i , one object O i (WP i ) with O i (WP i ) € O depending on given selection criteria; and a display (105) for displaying an information l(O i (WP i ) referring the selected object O i (WP i ).
Abstract:
Disclosed is an aircraft (102) comprising an aircraft avionics system (108) configured to perform one or more functions, and an interface module (110). The interface module (110) is configured to: store, for each function, respective one or more test criteria; receive, from an entity (104) remote from the aircraft avionics system (108), a function request for the aircraft avionics system (108) to perform a certain function; test the certain function against one or more of the stored test criteria corresponding to the certain function; and, responsive to determining that the certain function satisfies all of the test criteria that correspond to the certain function, outputting the function request for use by the aircraft avionics system (108).
Abstract:
Aircraft system and method detecting and present information relating to adverse airborne phenomena along an aircraft flight route. An imaging unit that includes an IR detector and a tunable spectral filter acquires IR images of the external environment, by acquiring wideband IR images when operating in a first mode and narrowband IR images respective of difference IR spectral bands when operating in a second mode. A data analysis unit detects and determines characteristics of adverse airborne phenomena in the environment based on at least the spectral signatures of environmental features in the acquired narrowband IR images. A display unit dynamically displays a visual representation of the detected adverse airborne phenomenon and its determined characteristics, overlaid onto a view of the external environment displayed to an operator of the aircraft. The visual representation may include variable visual attributes representing respective categories of characteristics of the detected adverse airborne phenomenon.
Abstract:
Группа изобретений относится к средствам повышения безопасности транспортных средств (ТС). Автономное модульное устройство содержит средства регистрации, контроля и реагирования, сигнальные средства, электронный модуль, кластерный модуль, не менее одной мембраны с определенными свойствами. Электронный модуль содержит процессорный блок, блок питания, коммуникационный и транспондерный блоки, блок датчиков, блок видеокамер, индикаторный и антенный блоки. Модули скреплены между собой определенным образом. Устройство для повышения безопасности ТС содержит отражающий излучение элемент и пассивную RFID-метку. Для соединения между собой модулей и мембран автономного модульного устройства склеивают модули нестойким к воде клеем, размещают мембраны между двумя отдельными модулями или сторонами, нуждающимися в защите от воздействия окружающей среды. Для прикрепления автономного модульного устройства к поверхности ТС его приклеивают нестойким к воде клеем. Повышается уровень безопасности транспортного средства.
Abstract:
A pilot control interface and method are described for selective control of an autopilot system by a pilot of an aircraft in which the autopilot system is installed. The pilot control interface includes a passive network that is selectively switchable between a plurality of states across an output interface that is made up of no more than two conductors that are in electrical communication with the autopilot system. Modification of a current autopilot flight mode can be performed incrementally or continuously based on respective momentary and continuous pilot input actuations.