Abstract:
Radiation curable, sprayable compositions are disclosed that include (a) an acrylated epoxy, and (b) at least one multi-functional acrylate monomer. The radiation curable, sprayable compositions of the invention include a material containing an amino group. Also disclosed are multi-layer composite coatings wherein at least one layer is deposited from such compositions.
Abstract:
A coating composition, comprising a film-forming component, a radiation curable group, and a matting agent, wherein, when the composition is deposited and treated to form a cured coating, the cured coating is characterized as having a higher concentration of the matting agent in a top half of the coating relative to a bottom half of the coating. Methods of treating a liquid radiation curable coating composition on a substrate are also disclosed, comprising applying an IR treatment to the liquid radiation curable coating composition, and applying a radiation curable treatment to the liquid radiation curable coating composition. The coating composition can provide improved properties, such as improved gloss, haze, flexibility, and/or chip resistance, when incorporated into a coating, or allow the use of less matting agent when compared to conventional coating compositions.
Abstract:
Disclosed herein are dual cure coating compositions that include a melamine group-containing polyethylenically unsaturated compound and a polysiloxane. Also disclosed are related multi-component composite coatings, coated substrates, and methods for coating a substrate.
Abstract:
Disclosed are substrates at least partially coated with a multi-layer composite coating system comprising a treatment layer deposited from a composition comprising a radiation cure initiator, wherein the composition is substantially free of any radiation-curable materials. The present invention is also directed to methods for improving the adhesion of multi-layer coating systems to substrates, particularly porous substrates, such as wood.
Abstract:
A method and composition for pretreating magnesium substrates prior to the application of a protective and/or decorative surface coating is disclosed. The pretreatment composition comprises (a) a compound containing at least 4 phosphorus acid groups and (b) a soluble alkaline earth salt. In an example, the composition comprises phytic acid, calcium chloride dihydrate and tetrafluoroboric acid and the pH is adjusted to 3 with potassium hydroxide.
Abstract:
Coating compositions are disclosed that include a film-forming resin, a colorant, a long chain alkyl group containing polymerizable ethylenically unsaturated compound, and a diluent. Also disclosed are substrates at least partially coated with such compositions, substrates at least partially coated with a multi-layer composite coating comprising at least one coating layer deposited from such compositions, and methods for improving the adhesion of a multi-layer composite coating system to a porous substrate.
Abstract:
Disclosed is a coating formed from a composition containing a film-forming resin and a plurality of particles dispersed in the resin. The average particle size of the particles is 0.1 to 50 microns, and the particles have a hardness sufficient to impart greater mar and/or scratch resistance to the coating as compared to a coating where no particles are present. Also, the difference between the refractive index of the resin and the refractive index of the particles ranges from 1 to 1.5. A method for preparing a powder coating including the particles also is provided.
Abstract:
Coating compositions are disclosed that include a film-forming resin, a radiation cure initiator, a colorant, and a diluent. These compositions are substantially free of radiation curable material. Also disclosed are substrates at least partially coated with such compositions, substrates at least partially coated with a multi-layer composite coating comprising at least one coating layer deposited from such compositions, and methods for improving the adhesion of a multi-layer composite coating system to a porous substrate.
Abstract:
Oligomers are disclosed that include a polyol portion, which includes a polyol modified with a fatty acid, and a free radical curable portion. The oligomers are substantially free of any ester linkages formed from the reaction of the polyol portion with a compound having more than one functional group. Compositions, such as coating compositions, comprising such oligomers are disclosed. Methods for using the present compositions are also disclosed.