Abstract:
Disclosed are systems for treating a substrate comprising a deoxidizing composition and a coating composition. The deoxidizing composition comprises a Group IVA metal and/or a Group IVB metal and free fluoride, optionally may comprise a homopolymer or copolymer comprising a phosphorous-containing monomeric subunit, and has a pH of 1.0 to 3.0. The coating composition comprises first and second components and elastomeric particles. The first component comprises an epoxy-containing compound (E1) and/or an epoxide-functional adduct (E2). The second component comprises a diamine and/or a polyamine comprising a cyclic ring (A2) and/or an amine-functional adduct (A3). The present invention is also directed to methods of making the compositions, methods of coating a substrate, and coated substrates.
Abstract:
The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate (41), such as glass, having a multi - layered coating thereon that includes a lead- free sacrificial cathodic layer (29). The sacrificial cathodic layer (29) includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo - titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating (32), that can be electrodeposited over the sacrificial cathodic layer (29).
Abstract:
A hard coat composition comprising an acid functional organosiloxane polyol wherein at least some of the acid functionality has been neutralized is disclosed. The hard coat is suitable for application to a substrate, and can be used without an adhesive promoting primer.
Abstract:
Coating compositions are disclosed that include a film-forming resin, a radiation cure initiator, a colorant, and a diluent. These compositions are substantially free of radiation curable material. Also disclosed are substrates at least partially coated with such compositions, substrates at least partially coated with a multi-layer composite coating comprising at least one coating layer deposited from such compositions, and methods for improving the adhesion of a multi-layer composite coating system to a porous substrate.
Abstract:
Photovoltaic modules are disclosed. The photovoltaic module comprises a front transparency, a fluid encapsulant deposited on at least a portion of the front transparency, electrically interconnected photovoltaic cells applied to the fluid encapsulant and a backcoat deposited on at least a portion of the electrically interconnected photovoltaic cells. Methods of making photovoltaic modules are also disclosed.
Abstract:
Disclosed herein are dual cure coating compositions that include a melamine group-containing polyethylenically unsaturated compound and a polysiloxane. Also disclosed are related multi-component composite coatings, coated substrates, and methods for coating a substrate.
Abstract:
A coating composition comprising a first component having a first polyester polyol having a first functionality, and a second polyester polyol having a second functionality, wherein the second functionality is greater than the first functionality, and a second component comprising an isocyanate, wherein the coating has an NCO:OH ratio of 1:1 or greater is disclosed. A coated flexible substrate comprising a flexible substrate, and a coating deposited on at least a portion of the substrate, wherein the coating comprises a first component having a first polyester polyol having a first functionality and a second polyester polyol having a second functionality, wherein the second functionality is greater than the first functionality and a second component comprising an isocyanate is also within the scope of the present invention.
Abstract:
Additive manufacturing compositions and methods may include a resin stabilized pigment. The pigment may be easily combined with at least one component of a co-reactive system, such as a co-reactive prepolymer formulation, via solid mixing without the need for grinding or additional solvents. The prepolymer formulation may be pigmented, printed, and cured under ambient conditions, and one or more pigments may be incorporated into the composition to change the color of the composition during printing and/or to selectively change the color of the printed article among several colors.
Abstract:
Disclosed herein are systems for treating a substrate. The system may include a cleaner composition, a deoxidizing composition comprising a Group IVA metal and/or a Group IVB metal and free fluoride and having a pH of 1.0 to 3.0, and/or a seal composition. The system may also include a coating composition. The cleaner composition, deoxidizing composition, and/or seal composition may comprise a homopolymer or a copolymer comprising a phosphorous-containing monomeric subunit m1. Also disclosed is a deoxidizing composition comprising a Group IVA metal and a Group IVB metal and free fluoride and having a pH of 1.0 to 3.0. Also disclosed are methods of treating a substrate. Also disclosed are treated substrates.
Abstract:
Disclosed herein is a composition comprising: an epoxy-containing component, elastomeric particles in an amount of greater than 11% by weight to 25% by weight based on total weight of the composition; and a curing component activatable by an external energy source, the curing component comprising at least one guanidine having a D90 particle size of 25 μm measured by dynamic light scattering. Also disclosed is the composition in an at least partially cured state. Also disclosed is a method for treating a substrate comprising applying the composition to a surface of a substrate; and applying an external energy source to cure the composition. Also disclosed are substrates comprising the composition. Also disclosed are substrates formed by the method of the present invention.