Abstract:
The invention relates to a system for manufacturing a plurality of integrated circuits, IC, mounted on a common support, the system comprising: an input station configured (adapted, arranged) to receive at least one common support; an output station configured (adapted, arranged) to receive at least one common support having a plurality of integrated circuits formed thereon; a plurality of processing modules each module being operable (configured, arranged, adapted) to perform at least one of the processing steps (e.g. deposition, patterning, etching) for forming an integrated circuit on the common support; a transfer means operable (configured, arranged, adapted) to transfer the at least one common support from the input station to the output station and to one or more of the processing modules therebetween; control means (e.g. a control system, or at least one controller, control unit, or control module) operable to direct the at least one common support from the input station to the output station through one or more of the plurality of processing modules according to at least one processing protocol comprising a selected one of a plurality of changeable pre-programmed protocols; the control means being operable to direct the movement of a common support from the input station to the output station and through one or more of the processing modules independently of any other common support. The invention also relates to a method for manufacturing a plurality of integrated circuits, IC, mounted on a common support.
Abstract:
A method of manufacturing an electronic device comprising a first terminal (e.g. a source terminal), a second terminal (e.g. a drain terminal), a semiconductor channel connecting the first and second terminals and a gate terminal to which a potential may be applied to control a conductivity of the channel. The method comprises a first exposure of a photoresist from above the substrate using a mask and a second exposure from below the substrate, wherein in the second exposure the first and second terminals shield a part of the photoresist from exposure. An intermediate step reduces the solubility of the photoresist exposed in the first exposure. A window is formed in the photoresist at the location which was shielded by the mask, but exposed to radiation from below. Semiconductor material, dielectric material and conductor material are deposited inside the window to form a semiconductor channel, gate dielectric, and a gate terminal, respectively.
Abstract:
A method of manufacturing a plurality of electronic circuits is disclosed. Each electronic circuit comprises a respective first portion, comprising a respective group of contact pads, and a respective integrated circuit, IC, comprising a respective group of terminals and mounted on the respective group of contact pads with each terminal in electrical contact with a respective contact pad. The method comprises: providing a first structure comprising the plurality of first portions; providing a second structure comprising the plurality of ICs and a common support arranged to support the plurality of ICs; transferring said ICs from the common support onto a first roller; transferring said ICs from the first roller onto a second roller; and transferring said ICs from the second roller onto the first structure such that each group of terminals is mounted on a respective group of contact pads.