Abstract:
Ensuring reproducibility in an artificial intelligence infrastructure that includes one or more storage systems and one or more graphical processing unit ('GPU') servers, including: identifying, by a unified management plane, one or more transformations applied to a dataset by the artificial intelligence infrastructure, wherein applying the one or more transformations to the dataset causes the artificial intelligence infrastructure to generate a transformed dataset; storing, within the one or more storage systems, information describing the dataset, the one or more transformations applied to the dataset, and the transformed dataset; identifying, by the unified management plane, one or more machine learning models executed by the artificial intelligence infrastructure using the transformed dataset as input; and storing, within the one or more storage systems, information describing one or more machine learning models executed using the transformed dataset as input.
Abstract:
A method for a transactional commit in a storage unit is provided. The method includes receiving a logical record from a storage node into a transaction engine of a storage unit of the storage node and writing the logical record into a data structure of the transaction engine. The method includes writing, to a command queue of the transaction engine, an indication to perform an atomic update using the logical record and transferring each portion of the logical record from the data structure of the transaction engine to non-persistent memory of the storage unit as a committed transaction. A storage unit for a storage system is also provided.
Abstract:
A method for storing data in a storage system having solid-state memory is provided. The method includes determining portions of the solid-state memory that have a faster access rate and portions of the solid-state memory that have a slower access rate, relative to each other or to a threshold. The method includes writing data bits of erasure coded data to the portions of the solid-state memory having the faster access rate, and writing one or more parity bits of the erasure coded data to the portions of the solid-state memory having the slower access rate. A storage system is also provided.
Abstract:
A method for storing user data is provided. The method includes distributing the user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a single chassis that couples the storage nodes as a cluster, each of the plurality of storage nodes having nonvolatile solid-state memory for user data storage. The method includes performing analytics on user data and grouping portions of the user data according to results of the analytics. The method includes writing the user data to blocks of flash memory in the non-volatile solid-state memory, wherein each block receives portions of the user data grouped according to at least one of the results of the analytics.
Abstract:
A method of applying scheduling policies is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are within a single chassis coupling the storage nodes as a cluster. The method includes receiving operations relating to a non-volatile memory of one of the plurality of storage nodes into a plurality of operation queues. The method includes evaluating each of the operations in the plurality of operation queues as to benefit to the non-volatile solid-state storage. For each channel of a plurality of channels coupling the operation queues to the non-volatile memory, the method includes iterating a selection and an execution of a next operation from the plurality of operation queues, with each next operation having a greater benefit than at least a subset of operations remaining in the operation queues.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes in the single chassis is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. The plurality of storage nodes configured to initiate an action based on the redundant copies of the metadata, responsive to achieving a level of redundancy for the redundant copies of the metadata. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
A method for managing flash and non-volatile memory is provided. The method includes determining at least one property of a data and determining to which type of a plurality of types of flash memory to write the data, based on the at least one property of the data. The plurality of types of flash memory includes at least two types having differing numbers of bits per cell. The method includes writing the data to a flash memory of the determined type. A memory and flash manager and a flash storage device are provided.
Abstract:
A method for updates in a storage system is provided. The method includes writing identifiers, associated with data to be stored, to storage units of the storage system and writing trim records indicative of identifiers that are allowed to not exist in the storage system to the storage units. The method includes determining whether stored data corresponding to records of identifiers is valid based on the records of the identifiers and the trim records.
Abstract:
A non-volatile solid-state storage is provided. The non-volatile solid state storage includes a non-volatile random access memory (NVRAM) addressable by a processor external to the non-volatile solid state storage. The NVRAM is configured to store user data and metadata relating to the user data. The non-volatile solid state storage includes a flash memory addressable by the processor. The flash memory is configured to store the user data responsive to the processor directing transfer of the user data from the NVRAM to the flash memory.
Abstract:
A method of applying an address space to data storage in a non-volatile solid-state storage is provided. The method includes receiving a plurality of portions of user data for storage in the non-volatile solid-state storage and assigning to each successive one of the plurality of portions of user data one of a plurality of sequential, nonrepeating addresses of an address space. The address range of the address space exceeds a maximum number of addresses expected to be applied during a lifespan of the non-volatile solid-state storage. The method includes writing each of the plurality of portions of user data to the non-volatile solid-state storage such that each of the plurality of portions of user data is identified and locatable for reading via the one of the plurality of sequential, nonrepeating addresses of the address space.