Abstract:
Certain aspects of the present disclosure generally relate to a voltage-controlled oscillator (VCO) that is configurable (e.g., in a dynamic manner) in multiple modes of operation (e.g., low/high-band modes). The VCO may include a resonant circuit coupled to a plurality of switches that may be used to adjust current flow within one or more inductive elements of the resonant circuit. By adjusting the current flow within the inductive elements, an inductance of the resonant circuit may be adjusted, which in turn adjusts a band of the VCO.
Abstract:
In certain aspects, a sampler includes a sampling capacitor, a precharge switch coupled to the sampling capacitor, one or more discharge circuits coupled to the sampling capacitor, and a reference-voltage circuit coupled to the sampling capacitor. The reference-voltage circuit is configured to generate a reference voltage based on a supply voltage, and generate a voltage difference between a voltage on the sampling capacitor and the reference voltage.
Abstract:
An apparatus implements a multiplying delay-locked loop (MDLL) including a sampler to be calibrated. In an example aspect, an apparatus includes an MDLL and a sampler calibrator. The MDLL includes a locked-loop feedforward path with a sampler, a control output, a feedback input, and a reference input coupled to a reference signal source. The MDLL also includes a VCO, a multiplexer, and a divider. The VCO includes a VCO input, a VCO output, and a control input coupled to the control output. The multiplexer includes a first input coupled to the reference signal source, a second input coupled to the VCO output, and an output coupled to the VCO input. The divider is coupled between the VCO output and the feedback input. The sampler calibrator includes a first input coupled to the reference signal source, a second input coupled to the VCO output, and an output coupled to the sampler.
Abstract:
A dual-band voltage controlled oscillator (VCO) includes: a first oscillator circuit including a first inductor; a second oscillator circuit including a second inductor; a first mode switch configured to electrically connect or disconnect a first output terminal of the first oscillator circuit and a first output terminal of the second oscillator circuit; a second mode switch configured to electrically connect or disconnect a second output terminal of the first oscillator circuit and a second output terminal of the second oscillator circuit; a third mode switch configured to electrically connect or disconnect a first terminal of the first inductor and a first terminal of the second inductor; and a fourth mode switch configured to electrically connect or disconnect a second terminal of the first inductor and a second terminal of the second inductor.