Abstract:
A method of reporting measurements of an uplink positioning reference signal includes: receiving, at a base station, the uplink positioning reference signal from a user equipment; determining, at the base station, a plurality of measurement values of the uplink positioning reference signal, each of the plurality of measurement values being of a same type of measurement, and corresponding to the uplink positioning reference signal; and sending, from the base station to a server, a report including the plurality of measurement values of the uplink positioning reference signal and at least one indication that the plurality of measurement values corresponds to a same uplink positioning reference signal.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for ondemand positioning. For example a method may include transmitting a request to participate in a UE positioning procedure, wherein the request indicates one or more parameters to be used by a location server in coordinating one or more base stations (BSs) to participate in the UE positioning procedure, and receiving signaling from the location server configuring the UE to participate in the UE positioning procedure.
Abstract:
Disclosed are implementations that include a method, generally performed at a mobile device, including receiving one or more wireless signals transmitted from a wireless node, with the wireless node being configured to operate in at least a first mode of operation to transmit wireless transmissions comprising one or more subframes configured according to a pre-determined first pattern of cell-specific reference signals (CRS) for the wireless node. The method also includes deriving, based on the received one or more wireless signals, at least one resultant signal attribute indicative of an actual CRS pattern for the received one or more wireless signals, and determining whether the at least one resultant signal attribute derived based on the received one or more wireless signals deviates from a corresponding expected at least one signal attribute associated with wireless signals including cell-specific reference signals produced according to the pre-determined first pattern of CRS.
Abstract:
A reference signal periodically transmitted by a base station in a wireless network can have certain proprietary properties to help prevent detection and utilization of the signal for unauthorized positioning of mobile devices. More specifically, a network node can obscure and introduce time-variation in mapping between positioning signals and a corresponding physical base stations. The network node may also introduce time variations in fields of a base station almanac (BSA) provided to subscribing user equipments (UEs). The information transmitted to the subscribing UEs may be encrypted.
Abstract:
Techniques described herein may enable more accurate location of a user equipment (UE) that may be subject to movement or velocity. The UE may obtain, during a period of time, location-related measurements of RF signals received at the UE, where the location-related measurements are indicative of a location of the UE during the period of time; The UE may also obtain, using sensors of the UE, velocity-related measurements indicative of a movement or velocity of the UE during the period of time. The UE may send the location-related measurements and the velocity-related measurements to a location server, which may compute a location of the UE based on the measurements. The location computation may allow for movement of the UE during the period of time.
Abstract:
Methods, systems, computer-readable media, and apparatuses for crowdsourcing the synchronization status of a network are presented. In various embodiments, a server receives a synchronization status of a base station associated with the network. If the synchronization status indicates that the network is synchronous, the server collects information for computing time correction data. The server may send the time correction data to the mobile device for use in determining the position of the mobile device when the mobile device is connected to the synchronous network.
Abstract:
Techniques are discussed for conveying frequency error characteristics for a plurality of cell transceivers from a server to a mobile device to enable the mobile device to determine an optimum or near optimum period of coherent integration of a downlink signal from one or more of the plurality of cell transceivers based on the frequency error characteristics. The coherent integration of the downlink signal may be to support a downlink terrestrial positioning method such as the Observed Time Difference of Arrival (OTDOA) method for Long Term Evolution (LTE) and the downlink signal may be a Positioning Reference Signal (PRS). A mobile device may perform downlink signal integration for longer periods than the optimum period for coherent integration by combining coherent integration results using non-coherent integration. The optimum period may achieve maximum or near maximum signal to noise ratio.
Abstract:
Methods, systems, computer-readable media, and apparatuses for determining a position of a mobile device connected to a network are presented. In various embodiments, the mobile device obtains a synchronization status of the network associated with one or more base stations. If the synchronization status indicates that the network is synchronous, the mobile device determines the position of the mobile device using previously collected crowdsourced time correction data for the synchronous network.
Abstract:
One or more sequences of binary values may be generated based on a length L and a duty cycle D, wherein duty cycle D denotes a percentage of a number of bits of value one in length L. Then, based on an identity of a cell, a sequence may be selected for use by a base station in muting its transmission of a positioning signal. The sequence which is selected may be used directly in muting with no change therein, or may be elongated followed by use of an elongated sequence in muting. When specific occasions are muted in the positioning signal, a mobile device may measure times of arrival of other positioning signals that are not muted. Two such measurements of arrival times may be used to compute a difference there between, for use as a difference measurement in a procedure to determine a location of the mobile device.
Abstract:
Example methods, apparatuses, and/or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate and/or support one or more operations and/or techniques for enhanced resource sharing for positioning reference signals (PRS) measurements, such as for use in or with mobile communication devices, for example.