Abstract:
A method of processing a satellite signal includes: receiving a satellite positioning system (SPS) signal, including an SPS data signal of unknown data content, from a satellite at a wireless communication device; receiving symbol indications, of determined symbol values, from a terrestrial wireless communication system at the wireless communication device; correlating the SPS data signal with a pseudo-random noise code to obtain first correlation results; and using the symbol indications and the first correlation results to determine a measurement of the SPS signal.
Abstract:
A periodically-transmitted reference signal can have certain proprietary properties to help to help prevent unauthorized detection and utilization of the signal. More specifically, a base station can adjust times at which a reference signal is transmitted and/or a code with which the signal is encoded. These adjustments may be based on an equation or algorithm, which can be shared with particular mobile devices as needed.
Abstract:
Mobile devices often use orthogonal frequency division multiplexing (OFDM) to calculate position information of mobile devices within the network. However, physical distance between the mobile device and a signal source for positioning and other environmental factors can influence the signal strength of received signals. Received signals at the mobile device that are stronger may drown out the weaker signals, particularly when two signal sources occupy the same symbol. In traditional OFDM, a signal source transmits the same symbol for each positioning occasion, so a weaker signal may never be detected over a stronger signal, reducing the accuracy of the positioning calculations. Described herein are systems and methods for using a pattern to vary the designated symbol for each signal source in a wireless network so that a weaker signal from a signal source may be detected on at least some of the positioning occasions.
Abstract:
Example methods, apparatuses, and/or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate and/or support one or more operations and/or techniques for enhanced resource sharing for positioning reference signals (PRS) measurements, such as for use in or with mobile communication devices, for example.
Abstract:
An apparatus and method for tracking a desired signal by sequentially tracking the desired signal with a variable integration time, performing automatic frequency control of the desired signal, and demodulating the desired signal using offline software. In one aspect, the automatic frequency control is performed using the offline software. In one aspect, the desired signal is from a GPS satellite.
Abstract:
Methods, apparatuses, and computer-readable media are described. In one example, a method, on a base station, for providing position measurements signals in a wireless communication network, comprises: determining a plurality of subcarriers for downlink transmission, wherein the plurality of subcarriers for downlink transmission comprise all subcarriers indicated in a resource block of a scheduled time of transmission within a scheduled transmission occasion, wherein the resource block comprises a plurality of symbol periods, wherein each symbol period of the plurality of symbol periods is for transmission of a symbol using one or more subcarriers of the plurality of subcarriers (610); and transmitting at the scheduled time of transmission, and using each subcarrier of the plurality of subcarriers, a wireless position measurement signal at the scheduled transmission occasion, the wireless position measurement signal being part of a sequence of wireless signals representing a position measurement signal bitstream (620).
Abstract:
Disclosed are methods, systems and/or devices to calibrate a network time by acquisition of satellite positioning system (SPS) signals and different instances of time, and time-tagging SPS times according to the network time. In particular, the network time may be calibrated based, at least in part, on a first difference between first and second SPS times obtained at two SPS position fixes and a second difference between corresponding first and second time stamps.
Abstract:
System and method for temperature-calibration of a crystal oscillator (XO) in a mobile device. A temperature-calibration status of the XO is determined and a trigger condition related to temperature-calibration of the XO is detected. If the temperaturecalibration status of the XO is not fully temperature-calibrated or if the XO has not been previously temperature-calibrated, a temperature-calibration session is initiated by an XO manager based on the condition, wherein a receiver is configured to receive signals and temperature-calibration of the XO is performed in a background mode based on the received signals. The condition based triggering ensures that the XO is temperaturecalibrated prior to launch of any position based or global navigation satellite systems (GNSS) based applications on the mobile device. The trigger condition can include first use or power-on, charging, presence in an outdoor environment, variation in operating temperature, pre-specified time, and/or user input pertaining to the mobile device.
Abstract:
Disclosed is an apparatus, system and method for location determination following a search discontinuity utilizing early sampling of a satellite positioning system signal to determine a common code phase offset, pseudorange rate and mode of location calculation.
Abstract:
A method performs an update for a first device that consumes information with a known expiration time. The first device operates within a network that accommodates other devices also consuming the information. The method includes setting a time for the first device to refresh the information, the time to refresh being based on a pseudorandom time offset. The method also includes sending a refresh request to a resource for the data during the set time.