Abstract:
A flowing electrolyte battery system and a method of maintaining a flowing electrolyte battery system is provided. The flowing electrolyte battery system includes a power bus, a maintenance bus, and a plurality of flowing electrolyte batteries switchedly connected to the power bus or the maintenance bus. A bi-directional converter connects the maintenance bus and the power bus, and the bi-directional converter includes a step-up mode, for creating a positive potential difference between the maintenance bus and the power bus, and a step-down mode, for creating a negative potential difference between the maintenance bus and the power bus.
Abstract:
An electrode plate, method for manufacturing an electrode plate, and method of testing an electrode plate enable efficient production of robust flowing electrolyte batteries. The method of testing an electrode plate includes forming a frangible portion in the electrode plate; providing a seal around a periphery of the electrode plate, wherein the periphery extends across the frangible portion; applying a gas adjacent a surface on a first side of the electrode plate; and detecting whether there is a presence of the gas adjacent a surface on a second side of the electrode plate, if the electrode plate passes testing, the frangible portion is removed from the electrode plate to define a cut-away region. The electrode plate is then positioned in a battery cell stack including a plurality of other electrode plates. A manifold is then attached to the cell stack adjacent the cut-away region of the electrode plate.
Abstract:
A separator for a flowing electrolyte battery, and a method of forming such a separator, enable improved efficiency in a flowing electrolyte battery. The separator includes a sheet having a first surface and a second surface opposing the first surface. A first spacer element is disposed on the first surface, and a second spacer element is disposed on the second surface. The first spacer element is wider than the second spacer element in a direction that is both parallel to the first and second surfaces and perpendicular to longitudinal axes of the first and second spacer elements.
Abstract:
A flowing electrolyte battery can be quickly and safely electrically stripped using electrolyte. The battery includes: a stack comprising a plurality of electrodes; a negative electrolyte circuit coupled to the stack, for circulating negative electrolyte through the stack; a positive electrolyte circuit coupled to the stack, for circulating positive electrolyte through the stack; and a valve coupling the positive electrolyte circuit and the negative electrolyte circuit. The valve includes a closed configuration that prevents flow of electrolyte between the positive electrolyte circuit and the negative electrolyte circuit, and an open configuration that enables flow of electrolyte from at least one of the positive electrolyte circuit and the negative electrolyte circuit to the other of the positive electrolyte circuit and the negative electrolyte circuit. The valve is opened and closed by changes in pressure differences between the positive and the negative electrolyte circuits.
Abstract:
A system and method for a flowing electrolyte battery enables compression plates to be produced from a uni-directional glass fibre reinforced thermoplastic composite which is able to maintain stiffness and is resistant to creep. The system includes: a cell stack of electrodes and separators, with a compression plate at each end of the cell stack, the compression plates consisting of thermoplastic composite with uni-directional glass fibre reinforcement layers, with at least one layer of the uni-directional glass fibre configured in a direction perpendicular to a direction of another layer of uni-directional glass fibre; at least one integral manifold adjacent to the cell stack configured to seal the cell stack; and side plates consisting of thermoplastic composite with a plurality of uni-directional glass fibre layers configured in a direction perpendicular to the compression plates, the side plates consisting of at least one surface layer of a first end layer or a second end layer of thermoplastic composite having less uni-directional glass fibre content than another layer.
Abstract:
A method of forming an integral manifold adjacent a cell stack of a flowing electrolyte battery enables improved bonding of a molten material to the battery cell stack. The method includes defining a mould cavity adjacent the cell stack, with the mould cavity open to capillary openings of half cells of the cell stack; locating a plurality of pins in the mould cavity, with end regions of the pins being contiguous with the capillary openings; preheating the mould cavity by passing a fluid into a first end of the mould cavity and out of a second end of the mould cavity; and filling the mould cavity with molten material.
Abstract:
An electrode and a method of manufacturing an electrode for a flowing electrolyte battery enable improved robustness and reduced manufacturing costs of bipolar electrodes for flowing electrolyte batteries. The electrode includes a polymer sheet having a first side and a second side; a graphite layer on the first side; and an activated carbon layer on the second side.