Abstract:
A flow battery includes a compression assembly including one or more biasing devices, a first compression member, an opposing second compression member, and a flow battery stack located between the first and second compression members. The flow battery stack includes stacked electrodes located in a central portion of the flow battery stack, and cell frames located in an edge portion of the flow battery stack and that surround the electrodes. The compression assembly is configured to apply a higher biasing force to the stacked electrodes located in the central portion of the flow battery stack than to the cell frames located in the edge portion of the flow battery stack.
Abstract:
The present disclosure relates to monopolar plate-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. A monopolar plate-electrode assembly including (i) a flow plate substrate having a first major surface and an opposed second major surface wherein the first major surface includes at least one flow channel and wherein the flow plate substrate includes at least one via intersecting the channel bottom of the at least one flow channel and the second major surface of the flow plate substrate; (ii) a porous electrode material contained in at least a portion of the at least one flow channel; and (iii) an electrically conductive material contained in at least a portion of the at least one via, wherein the electrically conductive material is in electrical communication with the porous electrode material. The disclosure further provides methods of making the monopolar plate-electrode assemblies.
Abstract:
An electrode plate, method for manufacturing an electrode plate, and method of testing an electrode plate enable efficient production of robust flowing electrolyte batteries. The method of testing an electrode plate includes forming a frangible portion in the electrode plate; providing a seal around a periphery of the electrode plate, wherein the periphery extends across the frangible portion; applying a gas adjacent a surface on a first side of the electrode plate; and detecting whether there is a presence of the gas adjacent a surface on a second side of the electrode plate, if the electrode plate passes testing, the frangible portion is removed from the electrode plate to define a cut-away region. The electrode plate is then positioned in a battery cell stack including a plurality of other electrode plates. A manifold is then attached to the cell stack adjacent the cut-away region of the electrode plate.
Abstract:
The invention relates to an electrochemical cell, comprising an anode half-shell (14) and a cathode half-shell (15) which are separated from one another by a membrane (8), having the corresponding electrodes, and the anode half-shell (14) and the cathode half-shell (15) each have an outer wall (12, 13), each outer wall having in the contact region of the two half-shells flange regions (16, 17) which are designed as a frame, and the flange regions (16 and 17) have assembly holes (4) which mark an inner region (23) and an outer region (24) of the electrochemical cell and a gas diffusion electrode (6) which rests on a support system (7), and a porous medium (9) which lies on the gas diffusion electrode (6), and devices for delivering and removing gas (18, 19) and electrolyte (20, 21). The invention is in particular characterised in that at least one peripheral frame seal (3) is provided in the contact region of the two half-shells between the frame-like flange regions (16 and 17) of the outer walls (12 and 13) of the two half-shells, and said seal lies on the membrane (8), wherein the porous medium (9) and the gas diffusion electrode (6) lie on the frame-like cathodic flange region (17) and in said region the peripheral frame seal (3) overlaps the porous medium (9) and the gas diffusion electrode (5), wherein said overlap region (2) has at least two profiled areas (1), wherein the peripheral frame seal has at least one further profiled area (22) in the contact region of the two half-shells between the frame-like flange regions (16 and 17) outside the overlap region of the porous medium (9) and the gas diffusion electrode (6) and/or at least one deformable sealing cord (5) is arranged, wherein the further profiled area (22) and/or the deformable sealing cord (5) is disposed in the inner region (23) of the electrochemical cell.
Abstract:
A fuel cell has an electrolyte, an anode provided on one side of the electrolyte and a cathode provided on the other side of the electrolyte, and a fuel passage which is formed so as to contact the anode and through which fuel flows. A substance having an ion-conducting property is mixed in with the fuel that flows through the fuel passage. For example, fuel is supplied to the fuel passage from a fuel supply apparatus, while a substance having an ion-conducting property is supplied to the fuel passage from an ion-conducting substance supply apparatus.
Abstract:
The present invention provides an aqueous-based electrolyte slurry for molten carbonate fuel cells. The invention provides means to eliminate the potential for the preferential transport of potassium carbonate and subsequent irreversible alteration of the 62/38 molar ratio of the eutectic mixture of the lithium potassium carbonate electrolyte.
Abstract:
A fuel cell includes a circulating electrolyte for preventing fuel cross over, the speed of electrolyte circulation determining the build-up of the fuel or reactant cross-over gradient. The removed methanol is reclaimed in a distillation loop.
Abstract:
A fuel cell includes a circulating electrolyte for preventing fuel cross over, the speed of electrolyte circulation determining the build-up of the fuel or reactant cross-over gradient. The removed methanol is reclaimed in a distillation loop.
Abstract:
A two-dimensional (2D) separator system for use in a flow battery, and a flow battery utilizing such 2D separator system are disclosed. The 2D separator system comprises a relatively thin layer of molecules, in one embodiment a sheet of 2D material, having perforations of a size configured to facilitate transfer of a common counter ion between an anolyte and a catholyte, and to inhibit transfer of one or more electro-active ions between the anolyte and the catholyte.
Abstract:
A liquid electrolyte fuel cell system comprises at least one fuel cell (80) comprising a liquid electrolyte chamber (82) between an anode (83) and an opposed cathode (84). During operation of the fuel cell system, ageing of the cathode is counteracted by (a) increasing the flow rate of gas to the cathode (84) during the course of operation; and/or (b) decreasing the concentration of electrolyte supplied to the liquid electrolyte chamber (82) during the course of operation. The optimum effect is achieved by performing both changes.