Abstract:
Disclosed embodiments relate to personal entertainment mount systems and methods, including methods and systems for retrofitting a personal entertainment mount onto existing seats having an entertainment display shroud for use with an in-flight entertainment display device. The display mount may be operable to allow a variety of different personal entertainment devices to be removably mounted onto a seat back.
Abstract:
An arm rest support includes a support element. A reinforcing element is disposed on the support element. The support element is chemically compatible with the reinforcing element. A homogeneous chemical bond is formed between the support element and the reinforcing element.
Abstract:
Disclosed embodiments relate to trays typically comprising a composite internal structure, a thermoplastic frame typically located about the composite internal structure, and two cover sheets forming the upper and lower tray surfaces. The composite internal structure may be a corrugated composite structure in some embodiments. In other embodiments, the composite internal structure may comprise a series of composite elements (which might act a beams or struts). The cover sheets may comprise thermoplastic material, and in some embodiments, the cover sheets may comprise composite material (for example the same as for the corrugated composite structure). In some exemplary embodiments, the thermoplastic frame and the composite internal structure may have the same thermoplastic material, and they may be joined together to have a plurality of homogeneous connective attachments.
Abstract:
An arm rest assembly that includes a thermoplastic arm rest body that defines an internal cavity and a support structure disposed within the internal cavity. The support structure is chemically compatible with the thermoplastic arm rest body such that a homogeneous chemical bond is formed between the support structure and the thermoplastic arm rest body. An arm rest cover is coupled to the arm rest body such that the internal cavity is enclosed by the arm rest body and the arm rest cover.
Abstract:
A seat back assembly that includes a composite seat back cover. The composite seat back cover includes at least one composite layer, that includes a layer of reinforcing fibers and a thermoplastic layer surrounding the reinforcing fibers. The thermoplastic layer is coextensive with the layer of reinforcing fibers. In various embodiments, the seat back includes a seat back frame. The seat back frame includes a side rail, a top rail main section, and a top rail cap. The side rail, the top rail main section, and the top rail cap are fused to each other by a homogenous chemical bond. A homogenous chemical bond is formed between the seat back cover and the seat back frame creating a unitary seat back assembly.
Abstract:
A failure module includes a support element. A reinforcing element is disposed on the support element. The support element is chemically compatible with the reinforcing element. A homogeneous chemical bond is formed between the support element and the reinforcing element.
Abstract:
A leg support includes a support element. A reinforcing element is disposed on the support element. The support element is chemically compatible with the reinforcing element. A homogeneous chemical bond is formed between the support element and the reinforcing element.
Abstract:
A mount assembly for a personal entertainment device that, in various embodiments, may include a mount plate and a rotatable bracket element coupled to the mount plate. An enclosure is coupled to the rotatable bracket element. The enclosure includes a plurality of adjustable retention members slidably disposed in the enclosure. At least one retention member of the plurality of adjustable retention members is linearly adjustable to facilitate receipt of a personal device by the enclosure.