Abstract:
An electronic device includes: a first sensor configured to generate a movement signal corresponding to a user movement; a second sensor configured to physically contact the user to generate a user bio-signal; a processor configured to determine a user sleeping state using the generated movement signal and the generated user bio-signal in each of time periods, and determine an operation state of another electronic device based on the determined sleeping state in respective time periods; and a communicator configured to transmit a control command corresponding to the determined operation state to the another electronic device.
Abstract:
A bio sensor a method of sensing for the bio sensor are provided. The bio sensor includes an electrode array. The electrode array includes an enzyme electrode for measuring a target material, a power driver for providing a voltage to the electrode array, and a processor for controlling the power driver to alternately provide a negative voltage and a positive voltage to the electrode array, and for controlling the power driver to provide a measurement voltage for measuring the target material to the electrode array after the alternating voltage is provided.
Abstract:
Disclosed is a biosensor needle including a light-transmissive main body having a width that is less than a length so as to be inserted into a testee, and a plurality of metal particles provided at at least a part of the main body and generating a surface enhanced Raman scattering (SERS) effect of light incident through the main body.
Abstract:
Disclosed are a biosensor electrode structure and a biosensor including the biosensor electrode. The biosensor electrode structure includes a working electrode that penetrates a subject and includes an enzyme that changes a first electrical response corresponding to a first electrical stimulation applied to the subject to a second electrical response in the subject, and first and second impedance electrodes that contact the subject and receive the first electrical response and the second electrical response from the subject, and that are spaced apart from each other.
Abstract:
A remote image transmission system, a display apparatus, and a guide displaying method of a display apparatus are provided. The remote image transmission system includes: an image capturing apparatus including a plurality of image pickup devices that are spaced from each other, the image capturing apparatus being configured to transmit, to a display apparatus, a plurality of images which are captured by the plurality of image pickup devices; and a display apparatus configured to generate a guide object indicating physical information of a captured object by using the plurality of received images, and to display the generated guide object and at least one of the plurality of images.
Abstract:
A wearable device wearable on a body and a method and an apparatus for providing in- formation by using the wearable device are provided. The wearable device includes at least two sensing units configured to sense detect biometric information of a wearer of the wearable device, and a connector electrically connecting the at least two sensing units to each other and having elasticity.
Abstract:
A biometric information measuring sensor is provided that includes a base comprising a plurality of bio-marker measuring areas and a plurality of electrodes. Each of the plurality of electrodes is disposed on a respective one of the plurality of bio-marker measuring areas, and each of the plurality of electrodes includes a working electrode and a counter electrode spaced apart from the working electrode. The biometric information measuring sensor also includes a plurality of needles. Each of the needles is disposed on a respective one of the plurality of electrodes. Two or more of the plurality of needles have different lengths.
Abstract:
Methods, apparatuses, and methods for manufacturing apparatuses that differentially detect beta and/or gamma rays are described. One radiation sensor described herein has operational amplifier(s), two blocking layers capable of blocking beta rays, and two photodiodes. The first photodiode is disposed between the blocking layers and thus isolated from incident beta rays. Accordingly, the first photodiode is capable of detecting gamma rays and providing a current corresponding to detected gamma rays to an operational amplifier. The second photodiode is disposed on one of the blocking layers and is capable of detecting beta rays and gamma rays and providing current corresponding to detected beta and/or gamma rays to an operational amplifier. The operational amplifiers convert the currents into voltage pulses which are used to, for example, determine if beta and/or gamma rays are detected and the amount/level of detected rays.
Abstract:
An oxygen saturation measuring apparatus is provided. The oxygen saturation measuring apparatus includes a sensor configured to detect motion of the oxygen saturation measuring apparatus, a light emitter comprising light emitting circuitry configured to emit light to a target subject, a light receiver comprising light receiving circuitry configured to receive one or more of light reflected by the target subject or light transmitted through the target subject to generate a signal, and a processor configured to filter a frequency component corresponding to the detected motion in the signal, to detect a pulse frequency from the filtered signal, and to determine oxygen saturation of the target subject using the filtered signal and the detected pulse frequency.
Abstract:
Methods and apparatuses for blood glucose measurement are provided. A first glucose concentration in a body fluid of a user is detected based on a first measurement interval. A first blood glucose level of the user is determined based on the first glucose concentration. A glucose concentration measurement interval is changed from the first measurement interval to a second measurement interval according to an occurrence of an event. A second glucose concentration in the body fluid is detected based on the second measurement interval. A second blood glucose level of the user is determined based on the second glucose concentration.