Abstract:
An apparatus and method to generate a dual transport stream. The apparatus includes an eraser encoder to receive a turbo stream and to eraser-encode the turbo stream, a duplicator to provide a parity insertion region for the eraser-encoded turbo stream, and a multiplexer to receive a normal stream and to multiplex the turbo stream processed by the duplicator and the normal stream to generate the dual transport stream. The duplicator provides the parity insertion region using a 1/2-rate conversion method or 1/4-rate conversion method. Only the turbo stream is detected prior to the transmission of the dual transport stream, and the parity is inserted into the parity insertion region, so that the turbo stream can be robustly processed.
Abstract:
An apparatus to generate a dual transport stream including a duplicator that receives a turbo stream and that provides a parity insertion region for the turbo stream, and a multiplexer that receives a normal stream and that multiplexes the turbo stream processed by the duplicator and the normal stream to generate the dual transport stream. The duplicator provides the parity insertion region using a 1/2-rate conversion method or 1/4-rate conversion method. Only the turbo stream is detected prior to the transmission of the dual transport stream, and the parity is inserted into the parity insertion region so that the turbo stream can be robustly processed.
Abstract:
A digital broadcasting reception apparatus and robust stream decoding method thereof. The digital broadcasting reception apparatus includes a robust decoder that decodes a robust stream of a dual transport stream where a normal stream and the robust stream are combined. The robust decoder includes a first decoder that trellis-decodes the robust stream; a robust deinterleaver that interleaves the trellis-decoded robust stream; a second decoder that convolution decodes the deinterleaved robust stream; a robust interleaver that interleaves the convolution-decoded robust stream; and a frame formatter that adds decoded data of the second decoder to a part that corresponds to a position of the robust stream of a frame where the normal stream and the robust stream are mixed. Accordingly, a receiver of a simple structure can be provided.
Abstract:
A digital broadcasting transmission and reception system includes a digital broadcasting transmission apparatus and a digital broadcasting reception apparatus. The digital broadcasting transmission apparatus that includes a robust processor that codes a robust stream of a dual transport stream where a normal stream and the robust stream are combined. The robust processor includes a demultiplexer (DE-MUX) that separates the normal stream and the robust stream from the dual transport stream; a robust encoder that appends a parity to the separated robust stream; a robust interleaver that interleaves the robust stream having the appended parity; and a MUX that combines the interleaved robust stream and the separated normal stream. The digital broadcasting reception apparatus includes a robust decoder that decodes a robust stream of a dual transport stream where a normal stream and the robust stream are combined. The robust decoder includes a first decoder that trellis-decodes the robust stream; a robust deinterleaver that interleaves the trellis-decoded robust stream; a second decoder that convolution decodes the deinterleaved robust stream; a robust interleaver that interleaves the convolution-decoded robust stream; and a frame formatter that adds decoded data of the second decoder to a part that corresponds to a position of the robust stream of a frame where the normal stream and the robust stream are mixed. Accordingly, a receiver of a simple structure can be provided.
Abstract:
An outer encoder includes a bit detector that receives a turbo stream provided with a parity insertion region and that detects data bits from the turbo stream, an encoder that convolution-encodes the detected data bits, and a bit inserter that inserts an encoded value outputted from the encoder into the parity insertion region in the turbo stream. The encoder includes a first register; a second register, in which when a bit value is stored in the first register, a stored value pre-stored in the first register is shifted and stored; a third register, in which when a bit value is stored in the second register, a stored value pre-stored in the second register is shifted and stored; a first adder adding the input bit value, the stored value pre-stored in the first register, and the stored value pre-stored in the third register, and storing the resultant value of addition in the first register, if a specified bit is inputted; and a second adder adding the input bit value, the stored value pre-stored in the first register, and the stored value pre-stored in the second register to output the resultant value of addition. Accordingly, only the turbo stream in the dual transport stream is robustly processed.
Abstract:
A digital broadcasting reception apparatus and robust stream decoding method thereof. The digital broadcasting reception apparatus includes a robust decoder that decodes a robust stream of a dual transport stream where a normal stream and the robust stream are combined. The robust decoder includes a first decoder that trellis-decodes the robust stream; a robust deinterleaver that interleaves the trellis-decoded robust stream; a second decoder that convolution decodes the deinterleaved robust stream; a robust interleaver that interleaves the convolution-decoded robust stream; and a frame formatter that adds decoded data of the second decoder to a part that corresponds to a position of the robust stream of a frame where the normal stream and the robust stream are mixed. Accordingly, a receiver of a simple structure can be provided.
Abstract:
A digital broadcasting transmission system and method thereof. The digital broadcasting transmission system, comprises an RS encoder to encode a dual transport stream (TS) which includes a normal stream and a plurality of turbo streams multiplexed together, an interleaver to interleave the encoded dual TS, a turbo processor to detect the turbo streams from the interleaved dual TS and to encode the detected turbo stream, and a trellis encoder to pseudo2 (P-2) vestigial sideband (VSB) code the turbo-processed dual TS, and, then, to perform trellis encoding, and a main multiplexer (MUX) to multiplex the trellis-encoded dual TS by adding a field synchronous signal and a segment synchronous signal thereto.
Abstract:
A dual transmission stream generating device includes an adaptor to receive a normal stream and to generate an adaptation field in an area of a packet of the normal stream; and a stuffer to generate a packet for a dual transmission stream by stuffing a turbo stream into the adaptation field. Accordingly, the turbo stream and the normal stream can be transmitted efficiently by the generation of the dual transmission stream in various constructions.
Abstract:
A method for processing a stream of a digital broadcast transmitter, the digital broadcast transmitter, a method of processing a stream of a digital broadcast receiver, and the digital broadcast receiver are provided. The method includes: configuring a stream including a slot to which mobile data is allocated; and encoding and interleaving the configured stream and outputting the encoded and interleaved stream. Each slot of the stream includes signaling data, and the signaling data includes a slot indicator indicating a type of a slot, and may include at least one of a backward training indicator and a forward training indicator according to a value of the slot indicator. Accordingly, information on an adjacent slot is efficiently used.
Abstract:
A method of processing a digital broadcasting signal includes generating a transport stream including a plurality of transport packets; selecting one of the transport packets as a starting packet to be mapped into a first data segment of an encoded data frame; and constructing deterministic data frames in the transport stream beginning with the starting packet; wherein at least one of the 52 transport packets does not have an adaptation field; wherein all remaining ones of the 52 transport packets do have an adaptation field; and wherein the at least one transport packet that does not have an adaptation field is provided at a fixed location in each of the slices.