Abstract:
In an FCC process and system, a whole crude oil feedstock is directly converted into light olefins and other products. The feed is separated into a high boiling fraction and a low boiling fraction, and each fraction is processed in separate FCC downflow reactors. The catalyst, combined from both downflow reactors, is regenerated in a common vessel. The low carbon content in the catalyst particles from the low boiling fraction downflow reactor is insufficient to provide the necessary heat. By combining catalyst particles from the high boiling fraction having high carbon content helps to provide additional heat for regeneration.
Abstract:
A fluid catalytic cracking catalyst for increased production of propylene and gasoline from heavy hydrocarbon feedstock, the catalyst comprising between 10 and 20% by weight of an ultra-stable Y-type zeolite, between 10 and 20% by weight of a phosphorous modified sub-micron ZSM-5, between 20 and 30% by weight of a pseudoboehmite alumina, and between 30 and 40% by weight kaolin.
Abstract:
Systems and methods for steam and catalytic cracking of a hydrocarbon inlet stream comprising hydrocarbons. Systems and methods can include a catalyst feed stream, where the catalyst feed stream comprises a fluid and a heterogeneous catalyst, the heterogeneous catalyst operable to catalyze cracking of the hydrocarbons on surfaces of the heterogeneous catalyst a steam feed stream, where the steam feed stream is operable to effect steam cracking of the hydrocarbons, and where the steam feed stream decreases coking of the heterogeneous catalyst; and a downflow reactor, where the downflow reactor is operable to accept and mix the hydrocarbon inlet stream, the catalyst feed stream, and the steam feed stream, where the downflow reactor is operable to produce light olefins by steam cracking and catalytic cracking, and where the downflow reactor is operable to allow the heterogeneous catalyst to flow downwardly by gravity.
Abstract:
The process described herein broadly comprehends an integrated process that permits the use of straight run residual fractions as a feedstock to produce lighter olefins including propylene. A blend of natural gas condensate and/or naphtha, and heavy oil residue(s), is catalytically cracked to produce a light olefin-rich product stream. In particular, the light natural gas condensate and/or naphtha stream is used as both solvent in a solvent-deasphalting unit and a portion for the feedstock to a fluidized catalytic cracking process. In addition, blending a heavy boiling hydrocarbon stream with a light natural gas condensate or naphtha stream enables efficient cracking in fluidized catalytic cracking process processes while sustaining the heat balance within the cracking unit.
Abstract:
Compositions and processed for their use as additives for reducing the sulfur content of FCC gasoline employ a support material having deposited on its surface (a) a first metal component from Group IIB of the Periodic Table and (b) a second metal component from Group III or Group IV of the Periodic Table. The additive composition is preferably made of a montmorillonite clay support containing zinc and gallium, zinc and zirconium. Alternatively, the additive composition includes support material having deposited on its surface a metal component from Group III of the Periodic Table, preferably a montmorillonite clay support containing gallium. The clay is impregnated with the metal(s) using the known incipient wetness method and the dried powdered additive composition is preferably formed into shapes suitable for use in the FCC unit.