Abstract:
A process and related system for producing para-xylene (PX). In an embodiment, the process includes (a) separating a feed stream comprising C 6+ aromatic hydrocarbons into a toluene containing stream and a C 8+ hydrocarbon containing stream and (b) contacting at least part of the toluene containing stream with a methylating agent in a methylation unit to convert toluene to xylenes and produce a methylated effluent stream. In addition, the process includes (c) recovering PX from the methylated effluent stream in (b) to produce a PX depleted stream and (d) transalkylating the PX depleted stream to produce a transalkylation effluent stream. The transalkylation effluent stream includes a higher concentration of toluene than the PX depleted stream. Further, the process includes (e) converting at least some ethylbenzene (EB) within the C 8+ hydrocarbon containing stream into toluene and (f) flowing the toluene converted in (e) to the contacting in (b).
Abstract:
Processes and systems for converting an oxygenate feedstock to a hydrocarbon product, selectivated catalysts and processes for reducing off-spec gasoline production during start-up are provided herein.
Abstract:
An oxidation catalyst is described for treating an exhaust gas produced by a diesel engine comprising a catalytic region and a substrate, wherein the catalytic region comprises a catalytic material comprising: bismuth (Bi), antimony (Sb) or an oxide thereof; a platinum group metal (PGM) selected from the group consisting of (i) platinum (Pt), (ii) palladium (Pd) and (iii) platinum (Pt) and palladium (Pd); and a support material, which is a refractory oxide; wherein the platinum group metal (PGM) is supported on the support material; and wherein the bismuth (Bi), antimony (Sb) or an oxide thereof is supported on the support material and/or the refractory oxide comprises the bismuth, antimony or an oxide thereof.
Abstract:
The present disclosure relates to an additive and a catalyst composition for a catalytic cracking process of vacuum gas oil for preparing cracked run naphtha having reduced liquid olefin content, and increased propylene and butylene yields in the LPG fraction. The process makes use of a catalyst composition which is a mixture of an FCC equilibrated catalyst and an additive comprising a zeolite, phosphorus and a combination of metal promoters. The process is successful in achieving high propylene and butylene yields in the LPG fraction along with a lower liquid olefin content and increased aromatic content with increase in RON unit in the resultant cracked run naphtha, as compared to that achieved using an FCC equilibrated catalyst alone.
Abstract:
A passive NOx adsorber is disclosed. The passive NO x adsorber is effective to adsorb NO x at or below a low temperature and release the adsorbed ΝΟ x at temperatures above the low temperature. The passive NO x adsorber comprises a noble metal and a molecular sieve having an LTL Framework Type. The invention also includes an exhaust system comprising the passive NO x adsorber, and a method for treating exhaust gas from an internal combustion engine utilizing the passive NO x adsorber.
Abstract:
In accordance with the present subject matter there is provided a catalyst composition including 70-98% of a non-zeolitic material; and 2-30% of at least one zeolite material, the percentage being based on weight of the catalyst composition. The subject matter also relates to a method for preparation of the catalyst composition. The subject matter further relates to a process for the fluid catalytic cracking of a hydrocarbon feedstock.
Abstract:
Catalysts having a blend of platinum on a support with low ammonia storage with an SCR catalyst are disclosed. The catalysts can also contain one or two additional SCR catalysts. The catalysts can be present in one of various configurations. Catalytic articles containing these catalysts are disclosed. The catalytic articles are useful for selective catalytic reduction (SCR) of NOx in exhaust gases and in reducing the amount of ammonia slip. Methods for producing such articles are described. Methods of using the catalytic articles in an SCR process, where the amount of ammonia slip is reduced, are also described.
Abstract:
A catalyst article having an extruded support having a plurality of channels through which exhaust gas flows during operation of an engine, and a single layer coating or a bi-layer coating on the support, where the extruded support contains a third SCR catalyst, the single layer coating and the bilayer-coating contain platinum on a support with low ammonia storage and a first SCR catalyst. The catalytic articles are useful for selective catalytic reduction (SCR) of NOx in exhaust gases and in reducing the amount of ammonia slip. Methods for producing such articles are described. Methods of using the catalytic articles in an SCR process, where the amount of ammonia slip is reduced, are also described.
Abstract:
In accordance with the present subject matter there is provided a catalyst composition including 70-98% of a non-zeolitic material; and 2-30% of at least one zeolite material, the percentage being based on weight of the catalyst composition. The subject matter also relates to a method for preparation of the catalyst composition. The subject matter further relates to a process for the fluid catalytic cracking of a hydrocarbon feedstock.