摘要:
Methods and systems of predicting the growth rate of hydrogen-induced cracking (HIC) in a physical asset (e.g., a pipeline, storage tank, etc.) are provided. The methodology receives a plurality of inputs regarding physical characteristics of the asset and performs parametric simulations to generate a simulated database of observations of the asset. The database is then used to train, test, and validate one or more expert systems that can then predict the growth rate and other characteristics of the asset over time. The systems herein can also generate alerts as to predicted dangerous conditions and modify inspection schedules based on such growth rate predictions.
摘要:
A method and a system for measuring the solubility of sulfur in a test gas, comprising flowing the test gas into a first conduit (112) that is packed with elemental sulfur and maintained at an elevated temperature, introducing the test gas containing elemental sulfur into a second conduit (116) that is maintained at a lower temperature lower, flowing the test gas into a third conduit (120) of which a portion (124) is maintained at a cold temperature sufficient to result in deposition of the elemental sulfur, and calculating the sulfur solubility based on the deposited amount of elemental sulfur.
摘要:
A system for coupling pipes includes a first pipe having a tapered, spigot end; a second pipe having a tapered, spigot end; wherein the first pipe and the second pipe are made from a reinforced thermosetting resin (RTR), and a coupler having two tapered socket ends adapted to internally receive the respective tapered, spigot ends of the first pipe and the second pipe, wherein a thermoplastic material is disposed between an exterior of the first pipe and an interior of the coupler. A thermoplastic material is disposed between an exterior of the second pipe and the interior of the coupler. Upon application of induction heating to the coupler, the heat between the first pipe, the second pipe, and the coupler is sufficient to melt the thermoplastic material such that, when the heat is removed, the hardened thermoplastic material seals the first pipe and the second pipe to the coupler. A system for coupling pipes includes a first pipe having a tapered, spigot end; and a second pipe having a tapered, socket end adapted to internally receive the tapered, spigot end of the first pipe. The first pipe and the second pipe are made from a reinforced thermosetting resin (RTR). A thermoplastic material is disposed between an exterior of the first pipe and an interior of the second pipe. Upon application of induction heating to the coupler, the heat between the first pipe and the second pipe is sufficient to melt the thermoplastic material such that, when the heat is removed, the hardened thermoplastic material seals the first pipe to the second pipe. A method includes disposing a thermoplastic material between an exterior of a first pipe and an interior of a coupler; disposing a thermoplastic material between an exterior of a second and an interior of the coupler; inserting the first pipe and the second pipe into the coupler; and applying induction heating to the coupler sufficient to melt the thermoplastic material such that, when the heat is removed, the hardened thermoplastic material seals the first pipe and the second pipe to the coupler. A method of coupling pipes includes disposing a thermoplastic material between an exterior of a first pipe and an interior of a second pipe; inserting the first pipe into the second pipe; and applying induction heating to the coupler sufficient to melt the thermoplastic material such that, when the heat is removed, the hardened thermoplastic material seals the first pipe to the second pipe.
摘要:
Separation apparatuses for the separation of a mixture of two fluids, such as a water-in- oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
摘要:
A syngas production system includes a gasification reactor and a syngas pressure vessel downstream of the gasification reactor. The syngas pressure vessel includes a pressure vessel having a body with a first portion and a second portion. The syngas pressure vessel also includes an evaporator disposed in the pressure vessel; a coil disposed in the pressure vessel; and a tongue-and-groove flange assembly. The tongue-and-groove flange assembly includes: a first flange with a raised ring extending from a face of the first flange, the first flange attached to the first portion of the body; a second flange with a groove defined in a face of the second flange. The second flange is attached to the second portion of the body. The raised ring extends from the face of the first flange and is positioned in the groove defined in the face of the second flange.
摘要:
A method of testing a material sample of a type used in a wall of a structure in a standard test for in-plane fracture toughness evaluation. The method comprises obtaining a sample having a lateral length no larger than a thickness of the wall of the structure, shaping the sample to have (a) a bottom surface, (b) a profiled top surface having a central notch, (c) a first coupling feature on a first side of the central notch, and (d) a second coupling feature on a second side of the central notch, assembling a test specimen which increases the width of the sample beyond the lateral width by coupling a first lateral extension to the first coupling feature and a second lateral extension to the second coupling feature, and applying a standard fracture toughness test to the so-assembled test specimen and sample to evaluate the fracture toughness of the sample.
摘要:
Apparatuses and methods of measuring a hydrogen diffusivity of a metal structure including during operation of the metal structure, are provided. A hydrogen charging surface is provided at a first location on an external surface of the structure. In addition, a hydrogen oxidation surface is provided at a second location adjacent to the first location on the external surface of the structure. Hydrogen flux is generated and directed into the metal surface at the charging surface. At least a portion of the hydrogen flux generated by the charging surface is diverted back toward the surface. A transient of the diverted hydrogen fluxes measured, and this measurement is used to determine the hydrogen diffusivity of the metal structure in service.
摘要:
Spoolable composite pipes (100) for oil and gas flowlines may include an inner extruded tubular liner (101), a reinforcement layer (102) surrounding the inner extruded tubular liner (101), and an outer extruded tubular (103) cover surrounding the reinforcement layer (102). In these spoolable composite pipes (100), the inner extruded tubular liner (101) may include an aliphatic polyketone. Internally lined pipes (200) for oil and gas flowlines may include inner extruded tubular liner (201) containing an aliphatic poly ketone, and a carbon steel pipe (202) surrounding the inner extruded tubular liner (201). The spoolable composite pipes (100) and the internally lined pipes (200) may be configured to operate at temperatures of up to about 110°C, and to carry hydrocarbons having an aromatic content of up to about 35% by volume of the total hydrocarbons content.
摘要:
A system and method for coupling pipes includes a first pipe (402) having a tapered, spigot end; and a second pipe (404) having a tapered, socket end adapted to internally receive the tapered, spigot end of the first pipe. The first pipe and the second pipe are made from a reinforced thermosetting resin (RTR) material (408). A thermal joining process is used to bond a thermoplastic material onto the RTR material of the first pipe (402), the second pipe (404), or both pipes. Upon application of thermal heating to the first and second pipes, the heat between the first pipe and the second pipe is sufficient to melt the thermoplastic material such that, when the heat is removed, the hardened thermoplastic material seals the first pipe (402) to the second pipe (404). A system and a method of coupling the first pipe and the second pipe may include the coupler made of RTR material.
摘要:
A system for coupling pipes includes a first pipe having a tapered, spigot end; a second pipe having a tapered, spigot end; and a coupler having two tapered socket ends adapted to internally receive the respective tapered, spigot ends of the first pipe and the second pipe, the first pipe and the second pipe are made from a reinforced thermosetting resin (RTR). A thermoplastic material is disposed between an exterior of the first pipe and an interior of the coupler. A thermoplastic material is disposed between an exterior of the second pipe and the interior of the coupler. Upon application of rotational force to the coupler, friction between the first pipe, the second pipe, and the coupler generates heat sufficient to melt the thermoplastic material such that, when the heat is removed, the hardened thermoplastic material seals the first pipe and the second pipe to the coupler. A method for coupling pipes includes disposing a thermoplastic material between an exterior of the first pipe and an interior of the coupler; disposing a thermoplastic material between an exterior of the second and an interior of the coupler; inserting the first pipe and the second pipe into the coupler; and applying a rotational force to the coupler such that friction between the first pipe, the second pipe, and the coupler generates heat sufficient to melt the thermoplastic material such that, when the heat is removed, the hardened thermoplastic material seals the first pipe and the second pipe to the coupler.