Abstract:
A new class of electrolyte salts that contain substituted imidazole or benzimidazole groups is described. The salts can be used in non-aqueous electrolytes in lithium or other alkali battery cells. When used with a lithium metal anode, the salts are electrochemically stable up to 5V vs. Li/Li + .
Abstract:
Perfluoropolyether electrolytes have either one or two terminal nitrile groups and an alkali metal salt. The alkali metal salt can be a lithium salt, a sodium salt, a potassium salt, or a cesium salt. The salt can make up between 5 and 30 wt% of the electrolyte composition. Such electrolytes have shown high ionic conductivities, making them useful as lithium cell electrolytes.
Abstract:
Polymer electrolytes incorporating PS-PEO block copolymers, PXE additives, and lithium salts provide improved physical properties relative to PS-PEO block copolymers and lithium salt alone, and thus provide improved battery performance.
Abstract:
Syntheses of alternating copolymers based on PEO and fluorinated polymers are described. Introduction of fluorinated polymer chains reduces the Tm of PEO and also increases the affinity and miscibility with ionic liquids, which improves ionic conductivity even at room temperature. The disclosed polymers containing PFPE have superior safety and are more flame retardant as compared to traditional electrolytes. Such alternating copolymers can be used as solid or gel electrolytes in Li batteries.
Abstract:
PVDF-g-PAN has been synthesized by grafting polyacrylonitrile onto polyvinylidene fluoride using an ATRP/AGET method. The novel polymer is ionically conducive and has much more flexibility than PVDF alone, making it especially useful either as a binder in battery cell electrodes or as a polymer electrolyte in a battery cell.
Abstract:
New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210°C. These materials can be made with either homopolymers or with block copolymers.
Abstract:
An effective method to synthesize Li borate salt such as Li(RfO) a BF b , in which a and b are integers, and a+b=4, has been disclosed. Using RfO-TMS as the starting material enables a streamlined synthesis scheme and makes purification of the final product simple.
Abstract:
New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In some arrangements, the structural block has a softening temperature of about 210°C. These materials can be made with either homopolymers or with block copolymers. When these polymers are combined with electrolyte salts, they can be used as electrolytes that have both high ionic conductivity and good mechanical properties.
Abstract:
Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210°C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.