Abstract:
The switch device includes a control switch that turns on/off an electrical connection between an apparatus and the power supply, a condition judging circuit that judges conditions of driving the control switch, an electric wave reception circuit that receives an electric wave, and a power supply circuit that generates power from the electric wave received by the electric wave reception circuit. An electric wave transmission device that transmits an electric wave for making the switch device operate is arranged in a space, whereby the electric wave can be received by the electric wave reception device in the specific space. The switch device controls the control switch to be turned off/on when the electric wave is received. Alternatively, when the electric wave is not received, the switch device turns on/off the control switch.
Abstract:
Provided is a touch panel capable of operating without dependence on visual observation, or a command-input method thereof. Provided is a touch panel with low power consumption, or a command-input method thereof. A command-input method of a touch panel including a first touch sensor and a second touch sensor includes a first step of sensing an object by the first touch sensor, a second step of starting operation for enabling operation of the second touch sensor, a third step of sensing the object by the second touch sensor, a fourth step of executing a first command by the touch panel, and a fifth step of starting operation for disabling the operation of the second touch sensor.
Abstract:
An electronic device with reduced power consumption is provided. The electronic device has a function of transmitting data. First data and second data are supplied to the electronic device. The electronic device has a function of generating a first hash value from the first data, and transmitting the first data. The electronic device has a function of generating a second hash value from the second data, comparing the first hash value with the second hash value, transmitting the second data when the first hash value is different from the second hash value, and not transmitting the second data when the first hash value is the same as the second hash value.
Abstract:
A liquid crystal display device is provided, which includes a liquid crystal element including a pixel electrode, a counter electrode, and a liquid crystal disposed between the pixel electrode and the counter electrode, a light source, a comparing circuit configured to compare a potential of the pixel electrode and a reference potential, and supply an output potential in accordance with the result of the comparison, and a control circuit configured to switch turning-on and turning-off of the light source in accordance with the output potential supplied from the comparing circuit.
Abstract:
Sensing time of a touch sensor is shortened to increase responsiveness of touch sensing. A display device includes a gate driver, a plurality of touch sensors, and a plurality of touch wirings. The gate driver has a function of supplying a scan signal to the plurality of touch wirings at the same timing, and the touch sensors in different positions sense a plurality of touches at the same timing. In this manner, the responsiveness of touch sensing is increased. The gate driver has a function of controlling a scan signal for refreshing display and a scan signal used by the touch sensor for sensing.
Abstract:
An imaging device connected to a neural network is provided. An imaging device having a neuron in a neural network includes a plurality of first pixels, a first circuit, a second circuit, and a third circuit. Each of the plurality of first pixels includes a photoelectric conversion element. The plurality of first pixels is electrically connected to the first circuit. The first circuit is electrically connected to the second circuit. The second circuit is electrically connected to the third circuit. Each of the plurality of first pixels generates an input signal of the neuron. The first circuit, the second circuit, and the third circuit function as the neuron. The third circuit includes an interface connected to the neural network.
Abstract:
A display device is provided in which a signal line (108) can be shared by a plurality of pixels (201) - (203) and data supplied from the signal line (108) can be distributed to a desired pixel selected from the plurality of pixels (201) - (203) by scan lines (106), (107). The display is characterized in its circuit structure of the plurality of pixels (201) -(203), which allows the signal line (108) to be shared by neighboring three pixels. This circuit structure results in the reduction of the number of signal lines and the simplification of the structure of the signal line driver circuit, which contributes to the reduction of the power consumption and miniaturization of the signal line driver circuit.