Abstract:
Embodiments of the present invention replace relatively bulky nonwoven thermal insulating materials used in thermal liners with thin, lightweight, flexible films that maintain or improve TPP performance while reducing the thickness, and enhancing the flexibility, of the thermal liner so as to increase wearer comfort. Moreover, the films incorporated into the thermal liners can be both air and vapor permeable such that the TPP performance is not realized at the expense of THL performance. Rather, the THL performance of garments incorporating embodiments of thermal liners contemplated herein is comparable to - if not improved over - garments formed with traditional thermal liners.
Abstract:
Flame resistant fabrics are formed by warp and fill yarns having different fiber contents. The fabrics are constructed, for example, by selection of a suitable weaving pattern, such that the body side of the fabric and the face side of the fabric have different properties. The fabrics described herein can be printable and dyeable on both sides of the fabric and are suitable for use in military and industrial garments. Methods of forming flame resistant fabrics, and methods for forming garments from the fabrics, are also described.
Abstract:
Flame resistant fabrics that have incorporated into them high tenacity long staple yarns. Such high tenacity long staple yarns are less expensive than continuous filament yarns and increase the strength fabrics that incorporate them as compared to fabrics formed of only spun yarns.
Abstract:
Flame resistant fabrics that have incorporated into them cellulosic filament yarns. The cellulosic filament yarns may be flame resistant (either inherently FR or treated so as to be FR) or non-flame resistant. Fabrics according to some embodiments are formed entirely of cellulosic filament yarns. However, fabrics according to some embodiments include additional yarns to ensure that the fabric complies with NFPA 1971 and/or 2112.