Abstract:
The present invention is directed to a method for manufacturing a drylaid mat suitable for thermoforming. The present invention is directed to a dry forming process, wherein cellulosic or lignocellulosic fibers have been impregnated, but not cross linked, with a cross linking agent prior to forming in a dry forming method. The invention is also directed to dry-laid mats manufactured according to the method as well as to thermoformed products manufactured from such dry-laid mats.
Abstract:
An air-laid blank (10) comprises natural fibers and a polymer binder. The air-laid blank (10) comprises multiple portions (11) having a local fiber orientation distribution that is different from a fiber orientation distribution of a remaining portion (13) of the air-laid blank (10). The air-laid blank (10) can be used to produce sound absorbing or damping articles (20). The invention also relates to methods and apparatuses (100) for producing such air-laid blanks (10).
Abstract:
A 3D shaped packaging product (20) for cushioning and/or thermal insulation of packaged goods is formed by hot pressing at an average pressure equal to or below 200 kPa of an air-laid blank (10) comprising natural fibers at a concentration of at least 70 % by weight of the air-laid blank (10) and a thermoplastic polymer binder at a concentration selected within an interval of from 4 up to 30 % by weight of the air-laid blank (10). The 3D shaped packaging product (20) has a density that is less than four times a density of the air-laid blank (10) and the density of the 3D shaped packaging product (20) is selected within an interval of from 15 to 240 kg/m3. The 3D shaped packaging product (20) maintains at least a significant portion of the porosity of the air-laid blank (10) even after hot pressing and therefore provides excellent shock absorbing and damping properties and thermal insulation.
Abstract:
A composite product comprising a fibrous material (A) and a polymer material (B), wherein the composite product is formed as a sheet, by wet web formation and wherein said web is formed from a suspension of said fibrous material and said polymer material in a double wire press (2a and 2b).
Abstract:
A 3D shaped product (20) is formed by hot pressing of an air-laid blank (10) comprising natural fibers at a concentration of at least 70 % by weight of the air-laid blank and a thermoplastic polymer binder at a concentration selected within an interval of from 2.5 up to 30 % by weight of the air-laid blank. The 3D shaped product (20) is recyclable in a repulping process. At least a part of the thermoplastic polymer binder is water soluble at a repulping temperature of the repulping process. The 3D shaped product (20) are environmentally friendly alternatives to plastic 3D shaped products made by foamed polymers and can be recycled in existing recycling schemes.
Abstract:
A folded 3D shaped packaging product (30) is folded at at least one crease (22A, 22B, 22C, 22D, 22E) constituting a folding line in a 3D shaped product (20) formed by hot pressing of an air-laid blank (10) comprising natural fibers at a concentration of at least 70 % by weight of the air-laid blank (10) and a thermoplastic polymer binder at a concentration selected within an interval of from 4 up to 30 % by weight of the air-laid blank (10). The folded 3D shaped packaging product (30) is useful for cushioning and/or thermal insulation of packaged goods and can protect multiple sides of the packaged goods.
Abstract:
The present invention relates to a process for the manufacturing of composite materials from natural fibers and thermoplastic polymers. Examples of fibers are wood fibers originating from pulping processes known as refiner pulp (RMP),thermomechanical pulp (TMP) or chemi-thermomechanical pulp (CTMP),but the process can also be applied to other kinds of natural fiber containing raw materials. In the process according to the present invention, fibers are introduced from the blowline or the housing of a refiner into a flash tube dryer, separated from humid air in a cyclone, introduced into a compounder and mixed with at least one thermoplastic polymer and the product is subsequently pelletized. The process according to the present invention is advantageously run as a continuous process.